Java并行任务框架Fork/Join

Fork/Join是什么?

Fork意思是分叉,Join为合并。Fork/Join是一个将任务分割并行运行,然后将最终结果合并成为大任务的结果的框架,父任务可以分割成若干个子任务,子任务可以继续分割,提供我们一种方便的并行任务功能,满足实际场景的业务需求,思想类似于MapReduce。任务的分割必须保证子任务独立,不会相互依赖结果。

 
 

从哪里开始?

Fork/Join框架主要有如下接口和类:

  • ForkJoinPool:一个线程池,用于执行调度分割的任务,实现了ExecutorService接口。提供三种执行任务的方式:

1、execute:最原生的执行方式,以异步执行,并且无返回结果。
2、submit:异步执行,有返回结果,返回结果是封装后的Future对象。
3、invoke和invokeAll:异步执行,有返回结果,会等待所有任务执行执行完成,返回的结果为无封装的泛型T。

  • ForkJoinTask:抽象的分割任务,提供以分叉的方式执行,以及合并执行结果。
  • RecursiveAction:异步任务,无返回结果。通常自定义的任务要继承,并重写compute方法,任务执行的就是compute方法。
  • RecursiveTask:异步任务,有返回结果。通常自定义的任务要继承,并重写compute方法,任务执行的就是compute方法。

核心类图

 
 

从核心类图看出,要想开始一个分割的并行任务,可以创建一个ForkJoinPool线程池,同时创建无返回结果的任务RecursiveAction或有返回结果的任务RecursiveTask,最后调用线程池ForkJoinPool的execute或submit或invoke方法执行任务,完成后合并结果。

实例

我们以一个有返回结果的并行任务实例进行测试。计算从起始值到结束值得连续数的累加结果,利用Fork/Join框架。并对比普通计算和并行计算的耗时差异。

package com.misout.forkjoin;

import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveTask;

/**
 * 计算从起始值到结束值得连续数的累加结果,利用Fork/Join框架
 * @author Misout
 * @date 2018-01-13 16:06:44
 */
public class SumTask extends RecursiveTask<Long> {

    private static final long serialVersionUID = 4828818665955149519L;
    
    /** 每个任务最多允许计算的数字个数阈值,超过这个阈值,任务进行拆分 */
    private static final long THRESHOLD = 1000L;
    
    /** 起始值 */
    private Long startNumber;
    
    /** 结束值 */
    private Long endNumber;
    
    public SumTask(Long startNumber, Long endNumber) {
        this.startNumber = startNumber;
        this.endNumber = endNumber;
    }

    /**
     * 累加数的个数超过阈值1000个,拆分成2个子任务执行。子任务继续作拆分。计算完,合并结果。
     */
    @Override
    protected Long compute() {
        if(startNumber > endNumber) {
            System.out.println("start number should be smaller than end number");
            return 0L;
        }
        if(endNumber - startNumber < THRESHOLD) {
            return this.getCount(startNumber, endNumber);
        } else {
            Long mid = (startNumber + endNumber) / 2;
            RecursiveTask<Long> subTask1 = new SumTask(startNumber, mid);
            RecursiveTask<Long> subTask2 = new SumTask(mid + 1, endNumber);
            subTask1.fork();
            subTask2.fork();
            
            return subTask1.join() + subTask2.join();
        }
    }
    
    /**
     * 普通累加执行方法
     * @param start 起始数
     * @param end 结束数
     * @return 累加和
     */
    protected Long getCount(Long start, Long end) {
        Long sum = 0L;
        for(long i = start; i <= end; i++) {
            sum += i;
        }
        
        return sum;
    }

    public static void main(String[] args) {
        ForkJoinPool forkJoinPool = new ForkJoinPool();
        Long start = 5L;
        Long end = 3463434L;
        SumTask task = new SumTask(start, end);
        
        Long startTime = System.currentTimeMillis();
        Long sum = forkJoinPool.invoke(task);
        Long endTime = System.currentTimeMillis();
        System.out.println("fork/join : sum = " + sum + ", cost time = " + (endTime - startTime) + "ms");
        
        startTime = System.currentTimeMillis();
        Long sum2 = task.getCount(start, end);
        endTime = System.currentTimeMillis();
        System.out.println("normal : sum = " + sum2 + ", cost time = " + (endTime - startTime) + "ms");
    }
}

说明:SumTask继承RecursiveTask,并实现了compute方法。在compute方法中会进行任务分割,并继续生成子任务,子任务仍然以分割的方式运行。

运行结果对比:

fork/join : sum = 5997689267885, cost time = 290ms
normal : sum = 5997689267885, cost time = 41ms

注意事项:任务拆分的深度最好不要太多,否则很容易因创建的线程过多影响系统性能。

work-stealing规则

在Java的API说明中提到,ForkJoinPool线程池与ThreadPoolExecutor线程池不同的地方在于,ForkJoinPool善于利用窃取工作执行加快任务的总体执行速度。实际上,在ForkJoinPool线程池中,若一个工作线程的任务队列为空没有任务执行时,便从其他工作线程中获取任务主动执行。为了实现工作窃取,在工作线程中维护了双端队列,窃取任务线程从队尾获取任务,被窃取任务线程从队头获取任务。这种机制充分利用线程进行并行计算,减少了线程竞争。但是当队列中只存在一个任务了时,两个线程去取反而会造成资源浪费。

 
                           ForkJoinPool工作窃取图
 
posted @ 2019-05-16 16:55  予我渡北川  阅读(952)  评论(0编辑  收藏  举报