sklearn中的模型评估
文章目录
- 1.介绍
- 2. scoring参数
- 3. 分类metrics
- 3.1 二分类/多分类/多标签
- 3.2 accuracy_score
- 3.3 Cohen’s kappa
- 3.4 混淆矩阵
- 3.5 分类报告
- 3.7 Jaccard相似度系数score
- 3.8 准确率,召回率与F值
- 3.8.1 二分类
- 3.8.2 多元分类和多标签分类
- 3.9 ROC
- 4. Multilabel的ranking metrics
- 5.回归metrics
- 5.1 可释方差值(Explained variance score)
- 5.2 平均绝对误差(Mean absolute error)
- 5.3 均方误差(Mean squared error)
- 5.4 中值绝对误差(Median absolute error)
- 5.5 R方值,确定系数
- 6.聚类metrics
- 7. Dummy estimators
1.介绍
有三种不同的方法来评估一个模型的预测质量:
- estimator的score方法:sklearn中的estimator都具有一个score方法,它提供了一个缺省的评估法则来解决问题。
- Scoring参数:使用cross-validation的模型评估工具,依赖于内部的scoring策略。见下。
- Metric函数:metrics模块实现了一些函数,用来评估预测误差。见下。
2. scoring参数
模型选择和评估工具,例如: grid_search.GridSearchCV 和 cross_validation.cross_val_score,使用scoring参数来控制你的estimator的好坏。
2.1 预定义的值
对于大多数case而说,你可以设计一个使用scoring参数的scorer对象;下面展示了所有可能的值。所有的scorer对象都遵循:高得分,更好效果。如果从mean_absolute_error 和mean_squared_error(它计算了模型与数据间的距离)返回的得分将被忽略。
2.2 从metric函数定义你的scoring策略
sklearn.metric提供了一些函数,用来计算真实值与预测值之间的预测误差:
- 以_score结尾的函数,返回一个最大值,越高越好
- 以_error结尾的函数,返回一个最小值,越小越好;如果使用make_scorer来创建scorer时,将greater_is_better设为False
接下去会讨论多种机器学习当中的metrics。
许多metrics并没有给出在scoring参数中可配置的字符名,因为有时你可能需要额外的参数,比如:fbeta_score。这种情况下,你需要生成一个合适的scorer对象。最简单的方法是调用make_scorer来生成scoring对象。该函数将metrics转换成在模型评估中可调用的对象。
第一个典型的用例是,将一个库中已经存在的metrics函数进行包装,使用定制参数,比如对fbeta_score函数中的beta参数进行设置:
>>> from sklearn.metrics import fbeta_score, make_scorer
>>> ftwo_scorer = make_scorer(fbeta_score, beta=2)
>>> from sklearn.grid_search import GridSearchCV
>>> from sklearn.svm import LinearSVC
>>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]}, scoring=ftwo_scorer)
第二个典型用例是,通过make_scorer构建一个完整的定制scorer函数,该函数可以带有多个参数:
- 你可以使用python函数:下例中的my_custom_loss_func
- python函数是否返回一个score(greater_is_better=True),还是返回一个loss(greater_is_better=False)。如果为loss,python函数的输出将被scorer对象忽略,根据交叉验证的原则,得分越高模型越好。
- 对于分类问题的metrics:如果你提供的python函数是否需要对连续值进行决策判断,可以将参数设置为(needs_threshold=True)。缺省值为False。
- 一些额外的参数:比如f1_score中的bata或labels。
下例使用定制的scorer,使用了greater_is_better参数:
>>> import numpy as np
>>> def my_custom_loss_func(ground_truth, predictions):
... diff = np.abs(ground_truth - predictions).max()
... return np.log(1 + diff)
...
>>> loss = make_scorer(my_custom_loss_func, greater_is_better=False)
>>> score = make_scorer(my_custom_loss_func, greater_is_better=True)
>>> ground_truth = [[1, 1]]
>>> predictions = [0, 1]
>>> from sklearn.dummy import DummyClassifier
>>> clf = DummyClassifier(strategy='most_frequent', random_state=0)
>>> clf = clf.fit(ground_truth, predictions)
>>> loss(clf,ground_truth, predictions)
-0.69...
>>> score(clf,ground_truth, predictions)
0.69...
2.3 实现你自己的scoring对象
你可以生成更灵活的模型scorer,通过从头构建自己的scoring对象来完成,不需要使用make_scorer工厂函数。对于一个自己实现的scorer来说,它需要遵循两个原则:
- 必须可以用(estimator, X, y)进行调用
- 必须返回一个float的值
3. 分类metrics
sklearn.metrics模块实现了一些loss, score以及一些工具函数来计算分类性能。一些metrics可能需要正例、置信度、或二分决策值的的概率估计。大多数实现允许每个sample提供一个对整体score来说带权重的分布,通过sample_weight参数完成。
- 一些二分类(binary classification)使用的case:
matthews_corrcoef(y_true, y_pred) precision_recall_curve(y_true, probas_pred) roc_curve(y_true, y_score[, pos_label, …])
- 一些多分类(multiclass)使用的case:
confusion_matrix(y_true, y_pred[, labels]) hinge_loss(y_true,
pred_decision[, labels, …])
- 一些多标签(multilabel)的case:
accuracy_score(y_true, y_pred[, normalize, …])
classification_report(y_true, y_pred[, …]) f1_score(y_true, y_pred[,
labels, …]) fbeta_score(y_true, y_pred, beta[, labels, …])
hamming_loss(y_true, y_pred[, classes])
jaccard_similarity_score(y_true, y_pred[, …]) log_loss(y_true,
y_pred[, eps, normalize, …]) precision_recall_fscore_support(y_true,
y_pred) precision_score(y_true, y_pred[, labels, …])
recall_score(y_true, y_pred[, labels, …]) zero_one_loss(y_true,
y_pred[, normalize, …])
- 还有一些可以同时用于二标签和多标签(不是多分类)问题:
average_precision_score(y_true, y_score[, …]) roc_auc_score(y_true,
y_score[, average, …])
在以下的部分,我们将讨论各个函数。
3.1 二分类/多分类/多标签
对于二分类来说,必须定义一些matrics(f1_score,roc_auc_score)。在这些case中,缺省只评估正例的label,缺省的正例label被标为1(可以通过配置pos_label参数来完成)
将一个二分类matrics拓展到多分类或多标签问题时,我们可以将数据看成多个二分类问题的集合,每个类都是一个二分类。接着,我们可以通过跨多个分类计算每个二分类metrics得分的均值,这在一些情况下很有用。你可以使用average参数来指定。
- macro:计算二分类metrics的均值,为每个类给出相同权重的分值。当小类很重要时会出问题,因为该macro-averging方法是对性能的平均。另一方面,该方法假设所有分类都是一样重要的,因此macro-averaging方法会对小类的性能影响很大。
- weighted: 对于不均衡数量的类来说,计算二分类metrics的平均,通过在每个类的score上进行加权实现。
- micro: 给出了每个样本类以及它对整个metrics的贡献的pair(sample-weight),而非对整个类的metrics求和,它会每个类的metrics上的权重及因子进行求和,来计算整个份额。Micro-averaging方法在多标签(multilabel)问题中设置,包含多分类,此时,大类将被忽略。
- samples:应用在 multilabel问题上。它不会计算每个类,相反,它会在评估数据中,通过计算真实类和预测类的差异的metrics,来求平均(sample_weight-weighted)
- average:average=None将返回一个数组,它包含了每个类的得分.
多分类(multiclass)数据提供了metric,和二分类类似,是一个label的数组,而多标签(multilabel)数据则返回一个索引矩阵,当样本i具有label j时,元素[i,j]的值为1,否则为0.
3.2 accuracy_score
accuracy_score函数计算了准确率,不管是正确预测的fraction(default),还是count(normalize=False)。
在multilabel分类中,该函数会返回子集的准确率。如果对于一个样本来说,必须严格匹配真实数据集中的label,整个集合的预测标签返回1.0;否则返回0.0.
预测值与真实值的准确率,在n个样本下的计算公式如下:
1(x)为指示函数。
>>> import numpy as np
>>> from sklearn.metrics import accuracy_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> accuracy_score(y_true, y_pred)
0.5
>>> accuracy_score(y_true, y_pred, normalize=False)
2
在多标签的case下,二分类label:
>>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5
3.3 Cohen’s kappa
函数cohen_kappa_score计算了Cohen’s kappa估计。这意味着需要比较通过不同的人工标注(numan annotators)的标签,而非分类器中正确的类。
kappa score是一个介于(-1, 1)之间的数. score>0.8意味着好的分类;0或更低意味着不好(实际是随机标签)
Kappa score可以用在二分类或多分类问题上,但不适用于多标签问题,以及超过两种标注的问题。
3.4 混淆矩阵
confusion_matrix函数通过计算混淆矩阵,用来计算分类准确率。
缺省的,在混淆矩阵中的i,j指的是观察的数目i,预测为j,示例:
>>> from sklearn.metrics import confusion_matrix
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> confusion_matrix(y_true, y_pred)
array([[2, 0, 0],
[0, 0, 1],
[1, 0, 2]])
示例:
- Confusion matrix
- Recognizing hand-written digits
- Classification of text documents using sparse features
3.5 分类报告
classification_report函数构建了一个文本报告,用于展示主要的分类metrics。 下例给出了一个小示例,它使用定制的target_names和对应的label:
>>> from sklearn.metrics import classification_report
>>> y_true = [0, 1, 2, 2, 0]
>>> y_pred = [0, 0, 2, 2, 0]
>>> target_names = ['class 0', 'class 1', 'class 2']
>>> print(classification_report(y_true, y_pred, target_names=target_names))
precision recall f1-score support
class 0 0.67 1.00 0.80 2
class 1 0.00 0.00 0.00 1
class 2 1.00 1.00 1.00 2
avg / total 0.67 0.80 0.72 5
示例:
##3 3.6 Hamming loss
hamming_loss计算了在两个样本集里的平均汉明距离或平均Hamming loss。
ˆyj是对应第j个label的预测值,
yj是对应的真实值
nlabels是类目数
那么两个样本间的Hamming loss为LHamming,定义如下:
其中:1(x)为指示函数。
>>> from sklearn.metrics import hamming_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> hamming_loss(y_true, y_pred)
0.25
在多标签(multilabel)的使用二元label指示器的情况:
>>> hamming_loss(np.array([[0, 1], [1, 1]]), np.zeros((2, 2)))
0.75
注意:在多分类问题上,Hamming loss与y_true 和 y_pred 间的Hamming距离相关,它与0-1 loss相类似。然而,0-1 loss会对不严格与真实数据集相匹配的预测集进行惩罚。因而,Hamming loss,作为0-1 loss的上界,也在0和1之间;预测一个合适的真实label的子集或超集将会给出一个介于0和1之间的Hamming loss.
3.7 Jaccard相似度系数score
jaccard_similarity_score函数会计算两对label集之间的Jaccard相似度系数的平均(缺省)或求和。它也被称为Jaccard index.
第i个样本的Jaccard相似度系数(Jaccard similarity coefficient),真实标签集为yi,预测标签集为:ˆyj,其定义如下:
在二分类和多分类问题上,Jaccard相似度系数score与分类的正确率(accuracy)相同:
>>> import numpy as np
>>> from sklearn.metrics import jaccard_similarity_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> jaccard_similarity_score(y_true, y_pred)
0.5
>>> jaccard_similarity_score(y_true, y_pred, normalize=False)
2
在多标签(multilabel)问题上,使用二元标签指示器:
>>> jaccard_similarity_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.75
3.8 准确率,召回率与F值
准确率(precision)可以衡量一个样本为负的标签被判成正,召回率(recall)用于衡量所有正例。
F-meature(包括:Fβ和F1”),可以认为是precision和recall的加权调和平均(weighted harmonic mean)。一个Fβ值,最佳为1,最差时为0. 如果β=1,那么Fβ和F1相等,precision和recall的权重相等。
precision_recall_curve会根据预测值和真实值来计算一条precision-recall典线。
average_precision_score则会预测值的平均准确率(AP: average precision)。该分值对应于precision-recall曲线下的面积。
sklearn提供了一些函数来分析precision, recall and F-measures值:
average_precision_score:计算预测值的AP
f1_score: 计算F1值,也被称为平衡F-score或F-meature
fbeta_score: 计算F-beta score
precision_recall_curve:计算不同概率阀值的precision-recall对
precision_recall_fscore_support:为每个类计算precision, recall, F-measure 和 support
precision_score: 计算precision
recall_score: 计算recall
注意:precision_recall_curve只用于二分类中。而average_precision_score可用于二分类或multilabel指示器格式
3.8.1 二分类
在二元分类中,术语“positive”和“negative”指的是分类器的预测类别(expectation),术语“true”和“false”则指的是预测是否正确(有时也称为:观察observation)。给出如下的定义:
实际类目(observation)
预测类目(expectation) TP(true positive)结果:Correct FP(false postive)结果:Unexpected
FN(false negative)结果: Missing TN(true negtive)结果:Correct
在这个上下文中,我们定义了precision, recall和F-measure:
这里是一个二元分类的示例:
>>> from sklearn import metrics
>>> y_pred = [0, 1, 0, 0]
>>> y_true = [0, 1, 0, 1]
>>> metrics.precision_score(y_true, y_pred)
1.0
>>> metrics.recall_score(y_true, y_pred)
0.5
>>> metrics.f1_score(y_true, y_pred)
0.66...
>>> metrics.fbeta_score(y_true, y_pred, beta=0.5)
0.83...
>>> metrics.fbeta_score(y_true, y_pred, beta=1)
0.66...
>>> metrics.fbeta_score(y_true, y_pred, beta=2)
0.55...
>>> metrics.precision_recall_fscore_support(y_true, y_pred, beta=0.5)
(array([ 0.66..., 1. ]), array([ 1. , 0.5]), array([ 0.71..., 0.83...]), array([2, 2]...))
>>> import numpy as np
>>> from sklearn.metrics import precision_recall_curve
>>> from sklearn.metrics import average_precision_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> precision, recall, threshold = precision_recall_curve(y_true, y_scores)
>>> precision
array([ 0.66..., 0.5 , 1. , 1. ])
>>> recall
array([ 1. , 0.5, 0.5, 0. ])
>>> threshold
array([ 0.35, 0.4 , 0.8 ])
>>> average_precision_score(y_true, y_scores)
0.79...
3.8.2 多元分类和多标签分类
在多分类(Multiclass)和多标签(multilabel)分类问题上,precision, recall, 和 F-measure的概念可以独立应用到每个label上。有一些方法可以综合各标签上的结果,通过指定average_precision_score (只能用在multilabel上), f1_score, fbeta_score, precision_recall_fscore_support, precision_score 和 recall_score这些函数上的参数average可以做到。
注意:
“micro”选项:表示在多分类中的对所有label进行micro-averaging产生一个平均precision,recall和F值
“weighted”选项:表示会产生一个weighted-averaging的F值。
可以考虑下面的概念:
y是(sample, label)pairs的预测集
ˆy是(sample, label)pairs的真实集
L是labels的集
S是labels的集
ˆy是y的子集,样本s,比如:y_s := \left{(s’, l) \in y | s’ = s \right}
yl表示label l的y子集
同样的,ys和yl都是ˆy的子集
P(A,B):=|A∩B||A|
R(A,B):=|A∩B||B| 在处理B=∅时方式更不同;该实现采用R(A,B):=0,且与P相类似。
Fβ(A,B):=(1+β2)P(A,B)×R(A,B)β2P(A,B)+R(A,B)
代码:
>>> from sklearn import metrics
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> metrics.precision_score(y_true, y_pred, average='macro')
0.22...
>>> metrics.recall_score(y_true, y_pred, average='micro')
...
0.33...
>>> metrics.f1_score(y_true, y_pred, average='weighted')
0.26...
>>> metrics.fbeta_score(y_true, y_pred, average='macro', beta=0.5)
0.23...
>>> metrics.precision_recall_fscore_support(y_true, y_pred, beta=0.5, average=None)
...
(array([ 0.66..., 0. , 0. ]), array([ 1., 0., 0.]), array([ 0.71..., 0. , 0. ]), array([2, 2, 2]...))
对于多分类问题,对于一个“negative class”,有可能会排除一些标签:
>>> metrics.recall_score(y_true, y_pred, labels=[1, 2], average='micro')
... # excluding 0, no labels were correctly recalled
0.0
类似的,在数据集样本中没有出现的label不能用在macro-averaging中。
>>> metrics.precision_score(y_true, y_pred, labels=[0, 1, 2, 3], average='macro')
...
0.166...
3.9 ROC
roc_curve计算了ROC曲线。Wikipedia如下:
“A receiver operating characteristic (ROC), or simply ROC curve, is a graphical plot which illustrates the performance of a binary classifier system as its discrimination threshold is varied. It is created by plotting the fraction of true positives out of the positives (TPR = true positive rate) vs. the fraction of false positives out of the negatives (FPR = false positive rate), at various threshold settings. TPR is also known as sensitivity, and FPR is one minus the specificity or true negative rate.”
该函数需要二分类的真实值和预测值,它可以是正例的概率估计,置信值,或二分决策值。下例展示了如何使用:
>>> import numpy as np
>>> from sklearn.metrics import roc_curve
>>> y = np.array([1, 1, 2, 2])
>>> scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = roc_curve(y, scores, pos_label=2)
>>> fpr
array([ 0. , 0.5, 0.5, 1. ])
>>> tpr
array([ 0.5, 0.5, 1. , 1. ])
>>> thresholds
array([ 0.8 , 0.4 , 0.35, 0.1 ])
roc_auc_score函数计算了ROC曲线下面的面积,它也被称为AUC或AUROC。通过计算下面的面积,曲线信息被归一化到1内。
>>> import numpy as np
>>> from sklearn.metrics import roc_auc_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> roc_auc_score(y_true, y_scores)
0.75
在多标签(multi-label)分类上,roc_auc_score通过对上面的label进行平均。
对比于其它metrics: accuracy、 Hamming loss、 F1-score, ROC不需要为每个label优化一个阀值。roc_auc_score函数也可以用于多分类(multi-class)问题上。如果预测的输出已经被二值化。
示例:
Receiver Operating Characteristic (ROC)
Receiver Operating Characteristic (ROC) with cross validation
Species distribution modeling
4. Multilabel的ranking metrics
在多标签学习上,每个样本都具有多个真实值label与它对应。它的目的是,为真实值label得到最高分或者最好的rank。
4.1 范围误差(Coverage error)
coverage_error计算了那些必须在最终预测(所有真实的label都会被预测)中包含的labels的平均数目。如果你想知道有多少top高分labels(top-scored-labels)时它会很有用,你必须以平均的方式进行预测,不漏过任何一个真实label。该metrics的最优值是对真实label求平均。
其中:$ \text{rank}{ij} = \left|\left{k: \hat{f}{ik} \geq \hat{f}_{ij} \right}\right| $。给定rank定义,通过给出最大的rank,来打破y_scores。
示例如下:
>>> import numpy as np
>>> from sklearn.metrics import coverage_error
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> coverage_error(y_true, y_score)
2.5
4.2 Label ranking平均准确率
label_ranking_average_precision_score函数实现了Label ranking平均准确率 :LRAP(label ranking average precision)。该metric与average_precision_score有关联,但它基于label ranking的概念,而非 precision/recall 。
LRAP会对每个样本上分配的真实label进行求平均,真实值的比例 vs. 低分值labels的总数。如果你可以为每个样本相关的label给出更好的rank,该指标将产生更好的分值。得到的score通常都会比0大,最佳值为1。如果每个样本都只有一个相关联的label,那么LRAP就与平均倒数排名:mean reciprocal rank
其中:
$ \mathcal{L}{ij} = \left{k: y{ik} = 1, \hat{f}{ik} \geq \hat{f}{ij} \right} $,
$ \text{rank}{ij} = \left|\left{k: \hat{f}{ik} \geq \hat{f}_{ij} \right}\right| $
|⋅|是l0 范式或是数据集的基数。
该函数的示例:
>>> import numpy as np
>>> from sklearn.metrics import label_ranking_average_precision_score
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> label_ranking_average_precision_score(y_true, y_score)
0.416...
5.回归metrics
sklearn.metrics 实现了许多种loss, score,untility函数来测评回归的性能。其中有一些可以作了增加用于处理多输出(multioutput)的情况:
mean_squared_error,
mean_absolute_error
explained_variance_score
r2_score
这些函数具有一个multioutput关键参数,它指定了对于每一个单独的target是否需要对scores/loss进行平均。缺省值为’uniform_average’,它会对结果进行均匀加权平均。如果输出的ndarray的shape为(n_outputs,),那么它们返回的entries为权重以及相应的平均权重。如果multioutput参数为’raw_values’,那么所有的scores/losses都不改变,以raw的方式返回一个shape为(n_outputs,)的数组。
r2_score和explained_variance_score 对于multioutput参数还接受另一个额外的值:’variance_weighted’。该选项将通过相应target变量的variance产生一个为每个单独的score加权的值。该设置将会对全局捕获的未归一化的variance进行量化。如果target的variance具有不同的规模(scale),那么该score将会把更多的重要性分配到那些更高的variance变量上。
对于r2_score的缺省值为multioutput=’variance_weighted’,向后兼容。后续版本会改成uniform_average。
5.1 可释方差值(Explained variance score)
explained_variance_score解释了explained variance regression score
如果ˆy是估计的target输出,y为相应的真实(correct)target输出,Var为求方差(variance),即标准差的平方,那么可释方差(explained variance)的估计如下:
最好的可能值为1.0,越低表示越差。
示例如下:
>>> from sklearn.metrics import explained_variance_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> explained_variance_score(y_true, y_pred)
0.957...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> explained_variance_score(y_true, y_pred, multioutput='raw_values')
...
array([ 0.967..., 1. ])
>>> explained_variance_score(y_true, y_pred, multioutput=[0.3, 0.7])
...
0.990...
5.2 平均绝对误差(Mean absolute error)
mean_absolute_error函数将会计算平均绝对误差,该指标对应于绝对误差loss(absolute error loss)或l1范式loss(l1-norm loss)的期望值。
示例:
>>> from sklearn.metrics import mean_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_absolute_error(y_true, y_pred)
0.5
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_absolute_error(y_true, y_pred)
0.75
>>> mean_absolute_error(y_true, y_pred, multioutput='raw_values')
array([ 0.5, 1. ])
>>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
...
0.849...
5.3 均方误差(Mean squared error)
mean_squared_error用于计算平均平方误差,该指标对应于平方(二次方)误差loss(squared (quadratic) error loss)的期望值。
示例为:
>>> from sklearn.metrics import mean_squared_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_squared_error(y_true, y_pred)
0.375
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_squared_error(y_true, y_pred)
0.7083...
示例:
5.4 中值绝对误差(Median absolute error)
median_absolute_error是很令人感兴趣的,它对异类(outliers)的情况是健壮的。该loss函数通过计算target和prediction间的绝对值,然后取中值得到。
MedAE的定义如下:
median_absolute_error不支持multioutput。
示例:
>>> from sklearn.metrics import median_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> median_absolute_error(y_true, y_pred)
0.5
5.5 R方值,确定系数
r2_score函数用于计算R²(确定系数:coefficient of determination)。它用来度量未来的样本是否可能通过模型被很好地预测。分值为1表示最好,它可以是负数(因为模型可以很糟糕)。一个恒定的模型总是能预测y的期望值,忽略掉输入的feature,得到一个R^2为0的分值。
示例:
>>> from sklearn.metrics import r2_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> r2_score(y_true, y_pred)
0.948...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred, multioutput='variance_weighted')
...
0.938...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred, multioutput='uniform_average')
...
0.936...
>>> r2_score(y_true, y_pred, multioutput='raw_values')
...
array([ 0.965..., 0.908...])
>>> r2_score(y_true, y_pred, multioutput=[0.3, 0.7])
...
0.925...
示例:
6.聚类metrics
sklearn.metrics也提供了聚类的metrics。更多细节详见:
7. Dummy estimators
当进行监督学习时,一个简单明智的check包括:使用不同的规则比较一个estimator。DummyClassifier实现了三种简单的策略用于分类:
stratified:根据训练集的分布来生成随机预测
most_frequent:在训练集中总是预测最频繁的label
prior:总是预测分类最大化分类优先权(比如:most_frequent),predict_proba返回分类优化权
uniform:以均匀方式随机生成预测
constant:由用户指定,总是预测一个常量的label。该方法的一个最主要动机是:F1-scoring,其中正例是最主要的。
注意,所有的这些策略中,predict方法会完成忽略输入数据!
示例,我们首先创建一个imbalanced的数据集:
>>> from sklearn.datasets import load_iris
>>> from sklearn.cross_validation import train_test_split
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> y[y != 1] = -1
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
下一步,比较下SVC的accuary和most_frequent:
>>> from sklearn.dummy import DummyClassifier
>>> from sklearn.svm import SVC
>>> clf = SVC(kernel='linear', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.63...
>>> clf = DummyClassifier(strategy='most_frequent',random_state=0)
>>> clf.fit(X_train, y_train)
DummyClassifier(constant=None, random_state=0, strategy='most_frequent')
>>> clf.score(X_test, y_test)
0.57...
我们可以看到SVC并不比DummyClassifier好很多,接着,我们换下kernel:
>>> clf = SVC(kernel='rbf', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.97...
我们可以看到,accuracy增强到了几乎100%。如果CPU开销不大,这里建议再做下cross-validation。如果你希望在参数空间进行优化,我们强烈推荐你使用GridSearchCV。
更一般的,分类器的accuracy太接近于随机,这可能意味着有可能会出问题:features没有用,超参数没有被正确设置,分类器所用的数据集imbalance,等等。。。
DummyRegressor也实现了4种简单的方法:
mean:通常预测训练target的均值。
median:通常预测训练target的中值。
quantile:预测由用户提供的训练target的分位数
constant:常量
在上面的所有策略,predict完全忽略输入数据。
参考:
http://scikit-learn.org/stable/modules/model_evaluation.html