Linear Regression

Linear Regression

公式推导

线性函数

\[y = \omega_1x_1+\omega_2x_2 + \cdots+\omega_ix_i+b \]

可以用下面的方式利用矩阵在表示:

\[y=\left[ \matrix{ \omega_1 && \omega_2 && \cdots && \omega_i && b } \right]\left[ \matrix{ x_1 \\ x_2 \\ \cdots \\ x_i \\ 1 } \right]=\omega^TX+b \]

对于提供的m组数据,每个数据有\(x_i\)\(y_i\)两个参数,分别表示输入和输出数据。所以上述的公式中的y应是预测值,表示为:

\[\hat{y}=h(X_i)=\omega^TX_i+b \]

下面引入损失函数的概念

\[\begin{align} J(\theta)=\frac{1}{2m}\sum_{i=0}^{m}(h_\theta(X_i)-y_i) \\ J(\theta)=\frac{1}{2m}\sum_{i=0}^{m}(\omega^TX_i+b-y_i) \end{align} \]

针对m组数据,计算每组数据的预测值和真实值的差的平方和,再除以2m,即为损失函数。

通过python代码,将\(y=\theta x\)​​的参数在0~2之间的变化的图像画出:

import matplotlib.pyplot as plt
import numpy as np

x = np.arange(0, 10, 0.01)
y = x

# 损失函数
def calCost(theta):
    h = [i * theta for i in x]
    cost = 0
    for i in range(len(h)):
        cost += (y[i]-h[i])*(y[i]-h[i])
    return cost

thetas = np.arange(0, 2, 0.001)
costs = list(map(calCost, thetas))
plt.plot(thetas, costs)
plt.show()

image-20210723091907503

为了让我们计算出的参数是的线性函数与数据集相拟合,我们可以得出当:

\[\begin{align} \frac{\partial J(\theta)}{\partial \omega^T}=0 \\ \frac{\partial J(\theta)}{\partial b}=0 \end{align} \]

当偏导数为0时,即此时的损失函数计算获得最小值,误差最小,w和b得到最优解,下面是上述方程的展开式:

\[\begin{align} \frac{\partial J(\omega,b)}{\partial\omega} & = \frac{1}{2m}\sum_{i=1}^{m}2(\omega^TX_i+b-y_i)X_i \\ & = \frac{1}{m}\sum_{i=1}^m(\omega^TX_i^2+bX_i-X_iy_i)\\ & = \frac{\omega^T}{m}\sum_{i=1}^{m}X_i^2-\frac{1}{m}\sum_{i=1}^{m}(y_i-b)X_i=0 \\ \frac{\partial J(\omega,b)}{\partial b} & = \frac{1}{2m}\sum_{i=1}^{m}2(\omega^TX_i+b-y_i) \\ & = \frac{1}{m}\sum_{i=1}^m(\omega^TX_i+b-y_i)\\ & = b=\frac{1}{m}\sum_{i=1}^{m}(y_i-\omega X_i) = 0 \end{align} \]

解得$$和b等于:

\[\begin{align} \omega=\frac{\sum_{i=1}^{m}y_i(X_i-\bar{x})}{\sum_{i=1}^{m}X_i^2-\frac{1}{m}(\sum_{i=1}^{m})^2} \\ \end{align} \]

\[b=\frac{1}{m}\sum_{i=1}^{m}(y_i-\omega^TX_i) \]

如果使用梯度下降法

那么每次更新的公式是:

\[\left[ \matrix{ \omega \\ b } \right]_{new}=\left[ \matrix{ \omega \\ b } \right]_{old}-\alpha\left[ \matrix{ \frac{\partial J(\omega,b)}{\partial\omega} \\ \frac{\partial J(\omega,b)}{\partial b} } \right] \]

新参数根据原参数减去学习率乘上原参数对各项求偏导的值,进行更新。

Pytorch从0开始实现

生成随机数据

import torch
import numpy as np
import random

num_inputs = 1 #  参数个数
num_examples = 1000 # 生成数据个数
true_w = [2] # w
true_b = 6.7 # b
# 输入,1000行1列
features = torch.randn(num_examples, num_inputs, dtype=torch.float32)
# 输出:w1x1+w2x2+b+随机数(噪声)
labels = true_w[0] * features[:, 0] + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float32)

# 显示数据
from d2l import *
set_figsize()
plt.scatter(features[:, 0].numpy(), labels.numpy(), 1)
plt.show()

image-20210723100426979

# 小批量数据生成
def data_iter(batch_size, features, labels):
    num_examples = len(features) # 数据的总大小
    # 生成下标列表
    indices = list(range(num_examples))
    # 打乱下标列表
    random.shuffle(indices)
    # 从0到数据总大小,每次增加batch_size个
    for i in range(0, num_examples, batch_size):
        # 取出数据的第i个到第i+batch_size个
        # 最后一次可能不足一个batch,所以要取min
        j = torch.LongTensor(indices[i: min(i + batch_size, num_examples)])
        # 把下标从0到j-1的数据返回
        yield  features.index_select(0, j), labels.index_select(0, j)


# 生成w是均值为0,标准差为0.01的正态随机数
w = torch.tensor(np.random.normal(0, 0.01, (num_inputs, 1)), dtype=torch.float32)
# b初始化为0
b = torch.zeros(1, dtype=torch.float32)

# 允许求梯度
w.requires_grad_(requires_grad=True)
b.requires_grad_(requires_grad=True)

# y=wx+b
def linreg(X, w, b):
    return torch.mm(X, w) + b

# 损失函数
def squared_loss(y_hat, y):
    return (y_hat - y.view(y_hat.size())) ** 2 / 2

# SGD
def sgd(params, lr, batch_size):
    for param in params:
        param.data -= lr * param.grad / batch_size


lr = 0.03  # 学习率
num_epochs = 5  # 学习次数
net = linreg  # 网络模型
loss = squared_loss  # 损失函数
batch_size = 10 # 批量大小

# 训练模型一共需要num_epochs个迭代周期
for epoch in range(num_epochs):
    # 在每一个迭代周期中,会使用训练数据集中所有样本一次(假设样本数能够被批量大小整除)
    # X和y分别是小批量样本的特征和标签
    for X, y in data_iter(batch_size, features, labels):
        # l是有关小批量X和y的损失
        l = loss(net(X, w, b), y).sum()
        # 反向传播小批量的损失对模型参数计算梯度
        l.backward()
        # 使用小批量随机梯度下降迭代模型参数
        sgd([w, b], lr, batch_size)

        # 梯度清零,很重要
        w.grad.data.zero_()
        b.grad.data.zero_()

    # 计算目前的w和b和正确的w和b的差值
    train_l = loss(net(features, w, b), labels)
    # 打印差值和
    print('epoch %d, loss %f' % (epoch + 1, train_l.mean().item()))

print(true_w, '\n', w)
print(true_b, '\n', b)

打印结果

epoch 1, loss 0.048183
epoch 2, loss 0.000156
epoch 3, loss 0.000053
epoch 4, loss 0.000053
epoch 5, loss 0.000053
[2] 
 tensor([[2.0003]], requires_grad=True)
6.7 
 tensor([6.6993], requires_grad=True)

Pytorch 简洁实现

import torch
import numpy as np
from torch import nn
from torch.nn import init
import torch.optim as optim

# 生成数据
num_inputs = 1
num_examples = 1000
true_w = [2]
true_b = 4.2
features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)
labels = true_w[0] * features[:, 0] + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)


import torch.utils.data as Data

# 批量大小
batch_size = 10
# 将训练数据的特征和标签组合
dataset = Data.TensorDataset(features, labels)
# 随机读取小批量
data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)

net = nn.Sequential(
    nn.Linear(num_inputs, 1)
)

# 初始化模型参数
# 修改w,正态分布,均值为0,标准差为1
init.normal_(net[0].weight, mean=0, std=0.01)
# 修改b
init.constant_(net[0].bias, val=0)


# 损失函数
loss = nn.MSELoss()


# SGD
optimizer = optim.SGD(net.parameters(), lr=0.03)


# 训练
num_epochs = 5
for epoch in range(1, num_epochs + 1):
    for X, y in data_iter:
        output = net(X)
        l = loss(output, y.view(-1, 1))
        optimizer.zero_grad() # 梯度清零,等价于net.zero_grad()
        l.backward()
        optimizer.step()
    print('epoch %d, loss: %f' % (epoch, l.item()))


# 查看结果
dense = net[0]
print(true_w)
print(dense.weight)
print(true_b)
print(dense.bias)

输出值

epoch 1, loss: 0.000351
epoch 2, loss: 0.000137
epoch 3, loss: 0.000202
epoch 4, loss: 0.000056
epoch 5, loss: 0.000073
[2]
Parameter containing:
tensor([[2.0008]], requires_grad=True)
4.2
Parameter containing:
tensor([4.1992], requires_grad=True)
posted @ 2021-07-23 12:06  骇人的籽  阅读(90)  评论(0编辑  收藏  举报