数列求和常用公式

1)1+2+3+......+n=n(n+1)÷2


2)1^2+2^2+3^2+......+n^2=n(n+1)(2n+1)÷6


3) 1^3+2^3+3^3+......+n^3=( 1+2+3+......+n)^2
     =n^2*(n+1)^2÷4


4) 1*2+2*3+3*4+......+n(n+1)
    =n(n+1)(n+2)÷3


5) 1*2*3+2*3*4+3*4*5+......+n(n+1)(n+2)
    =n(n+1)(n+2)(n+3)÷4


6) 1+3+6+10+15+......
   =1+(1+2)+(1+2+3)+(1+2+3+4)+......+(1+2+3+...+n)
   =[1*2+2*3+3*4+......+n(n+1)]/2=n(n+1)(n+2) ÷6


7)1+2+4+7+11+......
  =1+(1+1)+(1+1+2)+(1+1+2+3)+......+(1+1+2+3+...+n)
  =(n+1)*1+[1*2+2*3+3*4+......+n(n+1)]/2
  =(n+1)+n(n+1)(n+2) ÷6


8)1/2+1/2*3+1/3*4+......+1/n(n+1)
   =1-1/(n+1)=n÷(n+1)


9)1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+......+1/(1+2+3+...+n)
   =2/2*3+2/3*4+2/4*5+......+2/n(n+1)
   =(n-1) ÷(n+1)


10)1/1*2+2/2*3+3/2*3*4+......+(n-1)/2*3*4*...*n
  =(2*3*4*...*n- 1)/2*3*4*...*n


11)1^2+3^2+5^2+..........(2n-1)^2=n(4n^2-1) ÷3


12)1^3+3^3+5^3+..........(2n-1)^3=n^2(2n^2-1)


13)1^4+2^4+3^4+..........+n^4
  =n(n+1)(2n+1)(3n^2+3n-1) ÷30


14)1^5+2^5+3^5+..........+n^5
  =n^2 (n+1)^2 (2n^2+2n-1) ÷ 12


15)1+2+2^2+2^3+......+2^n=2^(n+1) – 1

posted on 2005-05-05 20:08  张瓅  阅读(9296)  评论(8编辑  收藏  举报

导航