使用递归高斯滤波器实现快速高斯模糊

高斯窗常用于对图像进行模糊或低通滤噪,但是随着高斯半径的增加,时间消耗会逐级增加

如高斯半径为N时,计算每个输出采样点需要计算的乘法次数为(2N+1)*模糊方向数,加法次数为2N*模糊方向数,这种情况下,当N=100时,甚至更大时,计算量是非常大的,即使进行SIMD指令集优化,在很多情况下仍然不能满足要求,比如N=100时,优化后的汇编代码的执行时间也通常在几百毫秒以上,远不能达到实时处理要求

上述的方法是使用高斯窗口对准的原理进行实现的,属于FIR型滤波,因为对于半径大于N的像素点,其权重取为0,即对当前点无贡献,然而在实际中我们知道,即使在3倍标准差外的像素也应该对中心点有贡献的,虽然很小

 

基于高斯滤波器的普通应用,对它的性能优化便变得很急迫,因而IIR型的高斯滤波器被研究了出来,以及被用于对边缘检测进行低能处理的IIR的高斯微分滤波器也同时被研究了出来,即前一个输出采样点对后一个输出采样点有贡献,公式如下

第一遍,从左到右,或从上到下

w(n) = a0*x(n) + a1*x(n-1) - b1*w(n-1) - b2*w(n-2)

第二遍,从右到右,或从下到上

y(n) = a2*x(n) + a3*x(n+1) - b1*y(n+1) - b2*y(n+2)

其中,a0,a1,a2,a3,b1,b2为滤波系数

最后将两遍的输出相加之各便是最终结果

 

从上述两个公式可以看出,每个输出采样点的计算与高斯半径是没有关系的,而6个滤波系数是高斯半径的函数,只被计算一次,这样,对高斯半径为50、100、300等的处理,每个输出采样点的计算量是相同的,都是乘法次数为8*模糊方向数,加法次数为7*模糊方向数,计算量大幅下降,在很多时候的图像处理能满足性能需求,并且质量不会下降,甚至CPU也能达到实时处理要求

 

上述的方法通常称为并行,这是因为两遍是分开计算的,最后将两遍结果相加。

另一种方向称为串行,即是将第一遍的w(n)作为第二遍的输入

 

参考文献:

(1)IIR Gaussian Blur Filter Implementation using Intel® Advanced Vector Extensions

(2)Recursively implementing the Gaussian and its derivatives

(3)Recursive Gaussian derivative Filters

(4)Recursive Gaussian Filters

(5)Recursivity and PDE’s in Image Processing

trackback: http://blog.csdn.net/lifesider/article/details/6718829

posted @ 2011-08-26 09:31  大有|元亨  阅读(2212)  评论(0编辑  收藏  举报