Torch的Dataloader类源代码以及简单解析

Torch的Dataloader类
import torch
import torch.multiprocessing as multiprocessing
from . import SequentialSampler, RandomSampler, BatchSampler
from . import _utils
import threading
from torch._six import queue


default_collate = _utils.collate.default_collate

class DataLoader(object):

    __initialized = False

    def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None,
                 batch_sampler=None, num_workers=0, collate_fn=default_collate,
                 pin_memory=False, drop_last=False, timeout=0,
                 worker_init_fn=None):
        self.dataset = dataset
        self.batch_size = batch_size
        self.num_workers = num_workers
        self.collate_fn = collate_fn
        self.pin_memory = pin_memory
        self.drop_last = drop_last
        self.timeout = timeout
        self.worker_init_fn = worker_init_fn

        if timeout < 0:
            raise ValueError('timeout option should be non-negative')

        if batch_sampler is not None: # 有batch_sampler之后,其他的什么东西都不能要了
            if batch_size > 1 or shuffle or sampler is not None or drop_last:
                raise ValueError('batch_sampler option is mutually exclusive '
                                 'with batch_size, shuffle, sampler, and drop_last')
            self.batch_size = None
            self.drop_last = None

        if sampler is not None and shuffle: # sampler 和shuffle不能兼容
            raise ValueError('sampler option is mutually exclusive with '
                             'shuffle')

        if self.num_workers < 0:
            raise ValueError('num_workers option cannot be negative; '
                             'use num_workers=0 to disable multiprocessing.')

        if batch_sampler is None:
            if sampler is None:
                if shuffle:
                    sampler = RandomSampler(dataset)
                else:
                    sampler = SequentialSampler(dataset)
            batch_sampler = BatchSampler(sampler, batch_size, drop_last)

        self.sampler = sampler
        self.batch_sampler = batch_sampler
        self.__initialized = True

    def __setattr__(self, attr, val):
        if self.__initialized and attr in ('batch_size', 'sampler', 'drop_last'):
            raise ValueError('{} attribute should not be set after {} is '
                             'initialized'.format(attr, self.__class__.__name__))

        super(DataLoader, self).__setattr__(attr, val)

    def __iter__(self):
        return _DataLoaderIter(self)

    def __len__(self):
        return len(self.batch_sampler)

使用方法大致如下:

for i, (input, target) in enumerate(train_data):

主要是_DataloaderIter这个类比较重要。

简单的来讲,有以下几点比较重要,或者说,比较不太容易懂。

  1. _ _ iter _ _() 和 _ _ next _ ()表示一个类是迭代器。 _ _ iter _ _()返回一个特殊的迭代器对象。
  2. Queue在使用的时候,当queue为空,queue.get()会阻塞,阻塞态的时候,如果其他进程/线程有get操作,本线程会被通知,然后get成功。当数据满了,queue.put会阻塞。
  3. 没有多线程的时候,batch = self.collate_fn([self.dataset[i] for i in indices]),使用index转化为data,数据。也就是(image,label)。
  4. 多线程的时候,为每一个线程创建index_queues。共享一个worker_result_queue数据队列。在_worker_loop中加载数据。
class _DataLoaderIter(object):
    """Iterates once over the DataLoader's dataset, as specified by the sampler"""
    # NOTE [ Data Loader Multiprocessing Shutdown Logic ]
    # Our data model looks like this (queues are indicated with curly brackets):
    #
    #                main process                              ||
    #                     |                                    ||
    #               {index_queue}                              ||
    #                     |                                    ||
    #              worker processes                            ||     DATA
    #                     |                                    ||
    #            {worker_result_queue}                         ||     FLOW
    #                     |                                    ||
    #      pin_memory_thread of main process                   ||   DIRECTION
    #                     |                                    ||
    #               {data_queue}                               ||
    #                     |                                    ||
    #                data output                               \/
    #

    def __init__(self, loader):
        self.dataset = loader.dataset
        self.collate_fn = loader.collate_fn
        self.batch_sampler = loader.batch_sampler
        self.num_workers = loader.num_workers
        self.pin_memory = loader.pin_memory and torch.cuda.is_available()
        self.timeout = loader.timeout

        self.sample_iter = iter(self.batch_sampler)

        base_seed = torch.LongTensor(1).random_().item()

        if self.num_workers > 0:
            self.worker_init_fn = loader.worker_init_fn
            self.worker_queue_idx = 0
            self.worker_result_queue = multiprocessing.Queue()
            self.batches_outstanding = 0
            self.worker_pids_set = False
            self.shutdown = False
            self.send_idx = 0
            self.rcvd_idx = 0
            self.reorder_dict = {}
            self.done_event = multiprocessing.Event()

            self.index_queues = []
            self.workers = []
            for i in range(self.num_workers): # 启动num_workers那么多个进程
                index_queue = multiprocessing.Queue()
                index_queue.cancel_join_thread()
                w = multiprocessing.Process(
                    target=_utils.worker._worker_loop,# 目的是启动_worker_loop这个函数
                    args=(self.dataset, index_queue,
                          self.worker_result_queue, self.done_event,
                          self.collate_fn, base_seed + i,
                          self.worker_init_fn, i))# 把idx和samples放进了全局的worker_result_queue里面,这里的idx指的不是batch的indexes。就是用了多个线程,往worker_result_queue中填满了数据而已。
                w.daemon = True
                # NB: Process.start() 
                w.start()
                self.index_queues.append(index_queue)
                self.workers.append(w)

            if self.pin_memory: # 貌似pin_memory的作用就是赋值一下tensor去GPU
                self.data_queue = queue.Queue()
                pin_memory_thread = threading.Thread(
                    target=_utils.pin_memory._pin_memory_loop,
                    args=(self.worker_result_queue, self.data_queue,
                          torch.cuda.current_device(), self.done_event))
                pin_memory_thread.daemon = True
                pin_memory_thread.start()
                # Similar to workers (see comment above), we only register pin_memory_thread once it is started.
                self.pin_memory_thread = pin_memory_thread
            else:
                self.data_queue = self.worker_result_queue
			
            # 这里不是很懂,设置pids
            _utils.signal_handling._set_worker_pids(id(self), tuple(w.pid for w in self.workers))
            _utils.signal_handling._set_SIGCHLD_handler()
            self.worker_pids_set = True

            # prime the prefetch loop
            for _ in range(2 * self.num_workers): # 为什么*2,表示不是很懂,这里相当于加载了2*num_workers个batch的数据。大概是说,初始化的时候,给定足量的数据在里面。
                self._put_indices()

    def __len__(self):
        return len(self.batch_sampler)

    def _get_batch(self): # 从data_queue中取得数据
        if self.timeout > 0:
            try:
                return self.data_queue.get(timeout=self.timeout) # 从data_queue中get数据
            except queue.Empty:
                raise RuntimeError('DataLoader timed out after {} seconds'.format(self.timeout))
        elif self.pin_memory:
            while self.pin_memory_thread.is_alive(): #先判断一下pin_memory的线程是否还活着
                try:
                    return self.data_queue.get(timeout=_utils.MP_STATUS_CHECK_INTERVAL)
                except queue.Empty:
                    continue
            else:
                # while condition is false, i.e., pin_memory_thread died.
                raise RuntimeError('Pin memory thread exited unexpectedly')
        else:
            return self.data_queue.get()

    def __next__(self):
        if self.num_workers == 0:  # same-process loading
            indices = next(self.sample_iter)  # may raise StopIteration
            batch = self.collate_fn([self.dataset[i] for i in indices])
            if self.pin_memory:
                batch = _utils.pin_memory.pin_memory_batch(batch)
            return batch

        # check if the next sample has already been generated
        # 这里,出现了的rcvd_idx可以用一个dict存起来。
        if self.rcvd_idx in self.reorder_dict:
            batch = self.reorder_dict.pop(self.rcvd_idx)
            return self._process_next_batch(batch)
		
        # 在outstandings这个东西消耗完之后,就直接shutdown workers, raise StopIteration
        if self.batches_outstanding == 0:
            self._shutdown_workers()
            raise StopIteration

        while True:
            assert (not self.shutdown and self.batches_outstanding > 0)
            idx, batch = self._get_batch()
            self.batches_outstanding -= 1
            if idx != self.rcvd_idx: # 这里的机制就必须按照rcvd_idx的顺序来。
                # store out-of-order samples
                self.reorder_dict[idx] = batch
                continue
            return self._process_next_batch(batch)

    next = __next__  # Python 2 compatibility

    def __iter__(self):
        return self

    def _put_indices(self):
        assert self.batches_outstanding < 2 * self.num_workers
        indices = next(self.sample_iter, None)
        if indices is None:
            return
        self.index_queues[self.worker_queue_idx].put((self.send_idx, indices))
        self.worker_queue_idx = (self.worker_queue_idx + 1) % self.num_workers
        self.batches_outstanding += 1
        self.send_idx += 1

    def _process_next_batch(self, batch):
        self.rcvd_idx += 1
        self._put_indices()
        if isinstance(batch, _utils.ExceptionWrapper):
            raise batch.exc_type(batch.exc_msg)
        return batch

    def __getstate__(self):
		"""
		TODO:为HogWild添加有限的picking支持,以便跨多个线程共享迭代器。
			 最好的方法可能是将示例推送到单独的线程,然后只共享数据队列,
			 但如果没有非阻塞的API,则发送结束信号是很困难的。
		"""
        raise NotImplementedError("_DataLoaderIter cannot be pickled")

    def _shutdown_workers(self):
        # See NOTE [ Data Loader Multiprocessing Shutdown Logic ] for details on the logic of this function.
        python_exit_status = _utils.python_exit_status
        if python_exit_status is True or python_exit_status is None:
            # See (2) of the note. If Python is shutting down, do no-op.
            return
        # Normal exit when last reference is gone / iterator is depleted. See (1) and the second half of the note.
        if not self.shutdown:
            self.shutdown = True
            # Removes pids from the C side data structure first so worker termination afterwards won't trigger false positive error report.
            if self.worker_pids_set:
                _utils.signal_handling._remove_worker_pids(id(self))
                self.worker_pids_set = False

            self.done_event.set()

            # Exit `pin_memory_thread` first because exiting workers may leave
            # corrupted data in `worker_result_queue` which `pin_memory_thread` reads from.
            if hasattr(self, 'pin_memory_thread'):
                self.worker_result_queue.cancel_join_thread()
                self.worker_result_queue.put(None)
                self.pin_memory_thread.join()
                self.worker_result_queue.close()

            # Exit workers now.
            for q in self.index_queues:
                q.put(None)
                # Indicate that no more data will be put on this queue by the current process.
                q.close()
            for w in self.workers:
                w.join()

    def __del__(self):
        if self.num_workers > 0:
            self._shutdown_workers()
def _worker_loop(dataset, index_queue, data_queue, collate_fn, seed, init_fn, worker_id):
    global _use_shared_memory
    _use_shared_memory = True

    # Intialize C side signal handlers for SIGBUS and SIGSEGV. Python signal
    # module's handlers are executed after Python returns from C low-level
    # handlers, likely when the same fatal signal happened again already.
    # https://docs.python.org/3/library/signal.html Sec. 18.8.1.1
    _set_worker_signal_handlers()

    torch.set_num_threads(1)
    random.seed(seed)
    torch.manual_seed(seed)

    if init_fn is not None: # 初始化worker
        init_fn(worker_id)

    watchdog = ManagerWatchdog()

    while True:
        try:
            r = index_queue.get(timeout=MANAGER_STATUS_CHECK_INTERVAL)
        except queue.Empty:
            if watchdog.is_alive():
                continue
            else:
                break
        if r is None:
            break
        idx, batch_indices = r
        try:
            samples = collate_fn([dataset[i] for i in batch_indices])
        except Exception:
            data_queue.put((idx, ExceptionWrapper(sys.exc_info())))
        else:
            data_queue.put((idx, samples)) # 把idx和samples放进了全局的worker_result_queue里面
            del samples
posted @ 2021-08-04 16:48  John_Ran  阅读(477)  评论(0编辑  收藏  举报