[BZOJ 1833] [ZJOI2010] count 数字计数 【数位DP】
题目链接:BZOJ - 1833
题目分析
数位DP ..
用 f[i][j][k] 表示第 i 位是 j 的 i 位数共有多少个数码 k 。
然后差分询问...Get()中注意一下,如果固定了第 i 位,这一位是 t ,那么数码 t 的答案是要加一个值的(见代码)。
代码
#include <iostream> #include <cstdlib> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; const int MaxBit = 15; typedef long long LL; struct ES { LL A[11]; }; ES operator + (const ES &a, const ES &b) { ES ret; for (int i = 0; i <= 9; ++i) ret.A[i] = a.A[i] + b.A[i]; return ret; } LL A, B; LL P10[MaxBit]; ES f[MaxBit][11]; ES Get(LL x) { ES ret; for (int i = 0; i <= 9; ++i) ret.A[i] = 0; if (x == 0) return ret; int l = 1; while (P10[l] <= x) ++l; for (int i = 1; i <= l - 1; ++i) { for (int j = 1; j <= 9; ++j) { ret = ret + f[i][j]; } } //0没有被统计 ++ret.A[0]; LL t; t = x / P10[l - 1]; x %= P10[l - 1]; //如果只有1位,下面这里也会不统计0,但是已经在上面补上了0 for (int i = 1; i <= t - 1; ++i) ret = ret + f[l][i]; ret.A[t] += x; for (int i = l - 1; i >= 1; --i) { t = x / P10[i - 1]; x %= P10[i - 1]; for (int j = 0; j <= t - 1; ++j) ret = ret + f[i][j]; ret.A[t] += x; } return ret; } int main() { P10[0] = 1ll; for (int i = 1; i <= 13; ++i) P10[i] = P10[i - 1] * 10ll; for (int i = 1; i <= 13; ++i) { for (int j = 0; j <= 9; ++j) { for (int k = 0; k <= 9; ++k) { f[i][j] = f[i][j] + f[i - 1][k]; } f[i][j].A[j] += P10[i - 1]; } } scanf("%lld%lld", &A, &B); ES TA, TB; TA = Get(A); TB = Get(B + 1); for (int i = 0; i <= 9; ++i) { printf("%lld", TB.A[i] - TA.A[i]); if (i == 9) printf("\n"); else printf(" "); } return 0; }