[BZOJ 1875] [SDOI 2009] HH去散步【矩阵乘法】

题目链接:BZOJ - 1875

 

题目分析:

  这道题如果去掉“不会立刻沿着刚刚走来的路走回”的限制,直接用邻接矩阵跑矩阵乘法就可以了。然而现在加了这个限制,建图的方式就要做一些改变。如果我们把每一条边看做点建矩阵,那么每次从一条边出发都只会到其他的边,不能仍然在这条边上“停留”,所以这就可以满足题目的限制。将每条边拆成两条单向边,比如一条编号为 4,一条编号为 5。那么 4^1=5, 5^1=4。这样只要不从第 i 条边走到 i 或 i^1 就可以了。初始的矩阵中以 A 为起点的边到达的方案数为 1 ,其余为 0。最后将终点为 B 的边的方案数累加即为答案。、

  这种将边与点灵活转化的思想十分巧妙,应注意。 

代码如下:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>

using namespace std;

const int MaxN = 20 + 5, MaxM = 120 + 5, Mod = 45989;

int n, m, t, A, B, TopA, TopB, Index, RT, Ans, a, b;
int EA[MaxM], EB[MaxM];

struct Edge
{
	int u, v;
	Edge() {}
	Edge(int a, int b) {
		u = a; v = b;
	}	
} E[MaxM];

struct Matrix 
{
	int x, y, Num[MaxM][MaxM];
	void SetXY(int xx, int yy) {
		x = xx; y = yy;
	}
	void Clear(int nn) {
		for (int i = 0; i < x; ++i) {
			for (int j = 0; j < y; ++j) {
				Num[i][j] = nn;
			}
		}
	}
} M0, MZ;

Matrix Mul(Matrix A, Matrix B) {
	Matrix ret;
	ret.SetXY(A.x, B.y);
	ret.Clear(0);
	for (int i = 0; i < ret.x; ++i) {
		for (int j = 0; j < ret.y; ++j) {
			for (int k = 0; k < A.y; ++k) {
				ret.Num[i][j] += A.Num[i][k] * B.Num[k][j];
				ret.Num[i][j] %= Mod;
			}
		}
	}
	return ret;
}

Matrix Pow(Matrix A, int b) {
	Matrix ret, f;
	f = A;
	ret.SetXY(f.x, f.y);
	for (int i = 0; i <= ret.x; ++i) ret.Num[i][i] = 1;
	while (b) {
		if (b & 1) ret = Mul(ret, f);
		b >>= 1;
		f = Mul(f, f);
	}
	return ret;
}

int main() 
{
	scanf("%d%d%d%d%d", &n, &m, &t, &A, &B);
	Index = -1;
	for (int i = 1; i <= m; ++i) {
		scanf("%d%d", &a, &b);
		E[++Index] = Edge(a, b);
		E[++Index] = Edge(b, a);
	}
	MZ.SetXY(m * 2, m * 2);
	MZ.Clear(0);
	TopA = TopB = 0;
	for (int i = 0; i <= Index; ++i) {
		if (E[i].u == A) EA[++TopA] = i;
		if (E[i].v == B) EB[++TopB] = i;
		for (int j = 0; j <= Index; ++j) {
			if (i != j && i != (j ^ 1) && E[i].v == E[j].u) 
				MZ.Num[i][j] = 1;
		}
	}
	M0.SetXY(1, m * 2); 
	M0.Clear(0);
	for (int i = 1; i <= TopA; ++i) M0.Num[0][EA[i]] = 1;
	MZ = Pow(MZ, t - 1);
	M0 = Mul(M0, MZ);
	Ans = 0;	
	for (int i = 1; i <= TopB; ++i) {
		Ans += M0.Num[0][EB[i]];
		Ans %= Mod;
	}
	printf("%d\n", Ans);
	return 0;
}

  

posted @ 2014-12-11 21:38  JoeFan  阅读(236)  评论(0编辑  收藏  举报