数据压缩:自动评估

在前一篇博文数据压缩简要的基础上,我希望把数据压缩评估自动化。于是有了这篇博文。

白皮书推荐对符合如下条件的大型表和索引使用页压缩:

  • 表或索引的扫描操作占到所有操作的75%及以上
  • 表或索引的更新操作占到所有操作的20%及以下

注意,这是白皮书中的结论和建议,只做参考,最为最佳实践的考虑点之一。

 

此脚本的原始作者是Louis Li。但是它的脚本有一些限制,我在这此基础上做了修改:

  • 辅助表由用户表改成临时表
  • 只分析页数大于1000的分区
  • 判断范围扩大到所有的表和索引,而不只是堆和聚集索引
  • 判断粒度改成分区级别。
  • 增加各分区使用空间的统计
  • 修改生成语句,增加提高性能的选项: MAXDOP=8,SORT_IN_TEMPDB=ON
  • 修改过滤条件。原来只分析Scan大于75%的分区,这样流水日志类型的表(S~=0%,U~=0%)会被过滤掉。改成(S>75%或者Update<20%)的。

下面脚本会找出符合以下条件的对象并生成相应的压缩数据脚本。

1. 扫描当前数据库的所有索引,找出同时符合下面条件的索引:

  • 索引的页数超过1000
  • 索引的SELECT操作在所有操作中的占比高于75%或者索引的UPDATE操作在所有操作中的占比小于20%

注意此处的粒度是基于分区的。所以如果表和索行,做了分区会在分区级别上做出判断。

2. 对于被上一步找出的索引,分别评估页和行压缩能节省的空间(用百分比表示)。

3. 对比行和页压缩的数据,进行推荐。对于没有UPDATE操作或者页压缩节省的空间比行压缩多10%,则推荐页压缩。其余索引都推荐行压缩。

4. 脚本的结果分为两部分,第一部分是推荐的压缩的索引,第二部分是推荐压缩的方式和相应脚本。

 

--Collect all index stats

if object_id('tempdb..#index_estimates') is not null

  drop table #index_estimates

go

create table #index_estimates

(

    database_name sysname not null,

    [schema_name] sysname not null,

    table_name sysname not null,

    index_id int not null,

    partition_number int not null,

    update_pct decimal(5,2) not null,

    select_pct decimal(5,2) not null,

    used_size_kb int not null,

    constraint pk_index_estimates primary key (database_name,[schema_name],table_name,index_id,partition_number)

)

;

go

insert into #index_estimates

select

    db_name() as database_name,

    schema_name(t.schema_id) as [schema_name],

    t.name,

    i.index_id,

    p.partition_number,

    i.leaf_update_count * 100.0 / (i.leaf_delete_count + i.leaf_insert_count + i.leaf_update_count + i.range_scan_count + i.singleton_lookup_count + i.leaf_page_merge_count) as UpdatePct,

    i.range_scan_count * 100.0 / (i.leaf_delete_count + i.leaf_insert_count + i.leaf_update_count + i.range_scan_count + i.singleton_lookup_count + i.leaf_page_merge_count) as SelectPct

    ,p.used_page_count*8 as used_size_kb

from 

    sys.dm_db_index_operational_stats(db_id(),null,null,null) i

    inner join sys.tables t on i.object_id = t.object_id

    inner join sys.dm_db_partition_stats p 

    on i.object_id = p.object_id and i.index_id=p.index_id and i.partition_number=p.partition_number

where

    i.leaf_delete_count + i.leaf_insert_count + i.leaf_update_count + i.range_scan_count + i.singleton_lookup_count + i.leaf_page_merge_count > 0

    and p.used_page_count >= 1000  -- only consider tables contain more than 1000 pages

    --and i.index_id<2 --only consider heap and clustered index

    and 

    (

    (i.range_scan_count / (i.leaf_delete_count + i.leaf_insert_count + i.leaf_update_count + i.range_scan_count + i.singleton_lookup_count + i.leaf_page_merge_count) > .75 

    or 

    (i.range_scan_count/ (i.leaf_delete_count + i.leaf_insert_count + i.leaf_update_count + i.range_scan_count + i.singleton_lookup_count + i.leaf_page_merge_count))< .2

    ))

order by

    t.name,

    i.index_id

go

--show data compression candidates

select * from #index_estimates;

--Prepare 2 intermediate tables for row compression and page compression estimates

if OBJECT_ID('tempdb..#page_compression_estimates') is not null 

  drop table #page_compression_estimates;

go

create table #page_compression_estimates

([object_name] sysname not null,

[schema_name] sysname not null,

index_id int not null,

partition_number int not null,

[size_with_current_compression_setting(KB)] bigint not null,

[size_with_requested_compression_setting(KB)] bigint not null,

[sample_size_with_current_compression_setting(KB)] bigint not null,

[sample_size_with_requested_compression_setting(KB)] bigint not null,

constraint pk_page_compression_estimates primary key ([object_name],[schema_name],index_id,partition_number)

);

go

if OBJECT_ID('tempdb..#row_compression_estimates') is not null 

   drop table #row_compression_estimates;

go

create table #row_compression_estimates

([object_name] sysname not null,

[schema_name] sysname not null,

index_id int not null,

partition_number int not null,

[size_with_current_compression_setting(KB)] bigint not null,

[size_with_requested_compression_setting(KB)] bigint not null,

[sample_size_with_current_compression_setting(KB)] bigint not null,

[sample_size_with_requested_compression_setting(KB)] bigint not null,

constraint pk_row_compression_estimates primary key ([object_name],[schema_name],index_id,partition_number)

);

go

--Use cursor and dynamic sql to get estimates  9:18 on my laptop

declare @script_template nvarchar(max) = 'insert ###compression_mode##_compression_estimates exec sp_estimate_data_compression_savings ''##schema_name##'',''##table_name##'',##index_id##,##partition_number##,''##compression_mode##''';

declare @executable_script nvarchar(max);

declare @schema sysname, @table sysname, @index_id smallint ,@partition_number smallint,@compression_mode nvarchar(20);

declare cur cursor fast_forward for 

select

    i.[schema_name],

    i.[table_name],

    i.index_id,

    i.partition_number,

    em.estimate_mode

from

    #index_estimates i cross join (values('row'),('page')) AS em(estimate_mode)

group by

    i.[schema_name],

    i.[table_name],

    em.estimate_mode,

    i.index_id,

    i.partition_number;

open cur;

fetch next from cur into @schema, @table,@index_id,@partition_number, @compression_mode;

while (@@FETCH_STATUS=0)

begin

    set @executable_script = REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(@script_template,'##schema_name##',@schema),'##table_name##',@table),'##compression_mode##',@compression_mode),'##index_id##',@index_id),'##partition_number##',@partition_number);

    print @executable_script;

    exec(@executable_script);

    fetch next from cur into @schema,@table,@index_id,@partition_number, @compression_mode;

end

close cur;

deallocate cur;

--Show estimates and proposed data compression 

with all_estimates as (

select

    '[' + i.schema_name + '].[' + i.table_name + ']' as table_name,

    case 

        when i.index_id > 0 then '[' + idx.name + ']'

        else null

    end as index_name,

    i.partition_number,

    i.select_pct,

    i.update_pct,

    case 

        when r.[size_with_current_compression_setting(KB)] > 0 then 

            100  - r.[size_with_requested_compression_setting(KB)] * 100.0 / r.[size_with_current_compression_setting(KB)] 

        else

            0.0

    end as row_compression_saving_pct,

    case 

        when p.[size_with_current_compression_setting(KB)] > 0 then

            100  - p.[size_with_requested_compression_setting(KB)] * 100.0 / p.[size_with_current_compression_setting(KB)] 

        else    

            0.0

    end as page_compression_saving_pct,

    (case when ps.name is null then 0 else 1 end)  as is_partitioned

from

    #index_estimates i

    inner join #row_compression_estimates r on i.schema_name = r.schema_name and i.table_name = r.object_name and i.index_id = r.index_id

    inner join #page_compression_estimates p on i.schema_name = p.schema_name and i.table_name = p.object_name and i.index_id = p.index_id

    inner join sys.indexes idx on i.index_id = idx.index_id and object_name(idx.object_id) = i.table_name

    left  join sys.partition_schemes ps on idx.data_space_id=ps.data_space_id

), 

recommend_compression as (

select

    table_name,

    index_name,

    select_pct,

    update_pct,

    row_compression_saving_pct,

    page_compression_saving_pct,

    partition_number,

    is_partitioned,

    case 

        when update_pct = 0 then 'Page'

        when update_pct >= 20 then 'Row'

        when update_pct > 0 and update_pct < 20 and page_compression_saving_pct - row_compression_saving_pct < 10 then 'Row'

        else 'Page'

    end as recommended_data_compression

from

    all_estimates

where

    row_compression_saving_pct > 0

    and page_compression_saving_pct > 0

)

select

    table_name,

    index_name,

    select_pct,

    update_pct,

    cast(row_compression_saving_pct as decimal(5,2)) as row_compression_saving_pct,

    cast(page_compression_saving_pct as decimal(5,2)) as page_compression_saving_pct,

    recommended_data_compression,

    case 

        when index_name is null and is_partitioned =0 then

            'ALTER TABLE ' + table_name + ' REBUILD WITH  ( data_compression = ' + recommended_data_compression + ',MAXDOP=8)' 

        when index_name is null and is_partitioned =1 then

            'ALTER TABLE ' + table_name + ' REBUILD PARTITION='+CAST(partition_number AS VARCHAR(2))+' WITH  ( data_compression = ' + recommended_data_compression + ',MAXDOP=8)' 

        when index_name is not null and is_partitioned =0 then

            'ALTER INDEX ' + index_name + ' ON ' + table_name + ' REBUILD WITH  (data_compression = ' + recommended_data_compression + ',MAXDOP=8,SORT_IN_TEMPDB=ON)' 

        when index_name is not null and is_partitioned =1 then 

            'ALTER INDEX ' + index_name + ' ON ' + table_name + ' REBUILD PARTITION='+CAST(partition_number AS VARCHAR(2))+' WITH  ( data_compression = ' + recommended_data_compression + ',MAXDOP=8,SORT_IN_TEMPDB=ON)'   

    end collate database_default as [statement] 

from

    recommend_compression

order by

    table_name

--Clean up

drop table #index_estimates;

drop table #page_compression_estimates;

drop table #row_compression_estimates;

GO
Evaluate Data Compression

 

注意:

这个脚本的分析时长由要分析对象的数量和数据量决定。可能你会发现,这个跟在SSMS中的Storage-Compression中评估值有一些差别。两种方式都使用的是sp_estimate_data_compression_savings,但是SSMS中不会指定@index_id参数,所以它评估的表中或者分区中所有对象的总合,这对于多个索引的表是非常不准确的。

 

总结:

1. 此脚本,我在很多生产环境中已经使用,均表现正常。但是如果你使用此脚本,请认真评估生成的推荐结果后再使用。

2. 数据压缩还会跟复制,AlwaysOn,列存储等相互影响,这又是另一个故事了。

3. 数据压缩不会压缩行外的LOB数据。如果要压缩只能在程序端压缩,或者使用FileStream+压缩卷。SQL Server 2016提供了新的函数COMPRESS/DECOMPRESS来压缩单个数据,但不是用来解决行外LOB压缩问题的。

posted @ 2016-07-14 15:22  Joe.TJ  阅读(829)  评论(5编辑  收藏  举报