DSO windowed optimization 代码 (3)
4 Schur Complement 部分信息计算
参考《DSO windowed optimization 公式》,Schur Complement 部分指 Hsc(\(H_{X\rho} H_{\rho\rho}^{-1} H_{\rho X}\))和 bsc(\(H_{X\rho} H_{\rho\rho}^{-1} J_{\rho}^T r\))。
4.1 AccumulatedSCHessianSSE::addPoint()
优化的局部信息计算
最终得到的 Hsc 是 68x68 的矩阵,bsc 是 68x1 的矩阵。
4.1.1 局部变量
p->HdiF
对应 \(\left( \sum_{i=1}^N {\partial r^{(i)} \over \partial \rho^{(j)}}^T{\partial r^{(i)} \over \partial \rho^{(j)}} \right)^{-1}\),1x1。在前面的 AccumulatedTopHessianSSE::addPoint() 已经进行了累加,而这个是一个 Scalar 量,现在只需要求一个倒数就行了。
Hcd
对应 \(\left( \sum_{i=1}^N {\partial r^{(i)} \over \partial C}^T {\partial r^{(i)} \over \partial \rho^{(j)}} \right)\),4x1。
p->bdSumF
对应当前点
下,所有 \({\partial r_{21} \over \partial \rho_1}^T r_{21}\) 的求和,即 \(\left( \sum_{i=1}^N {\partial r^{(i)} \over \partial \rho^{(j)}}^T r^{(i)} \right)\),1x1。
r1->JpJdF
对应当前residual
下,所有 \({\partial r_{21} \over \partial X_{21}}^T {\partial r_{21} \over \partial \rho_1} = \begin{bmatrix} {\partial r_{21} \over \partial \xi_{21}}^T{\partial r_{21} \over \partial \rho_1} \\ {\partial r_{21} \over \partial l_{21}}^T{\partial r_{21} \over \partial \rho_1}\end{bmatrix}\) 的和。\(\left( {\partial r^{(i)} \over \partial X_{tj}}^T {\partial r^{(i)} \over \partial \rho^{(j)}} \right)\),8x1。\(t\) 表示 target,也就是 \(r^{(i)}\) 联系的另外一个 frame。
4.1.2 成员变量更新
accHcc[tid].update(Hcd,Hcd,p->HdiF)
是在accHcc
中加上了针对当前点
的Hcc
,对应 \(\left( \sum_{i=1}^N {\partial r^{(i)} \over \partial C}^T {\partial r^{(i)} \over \partial \rho^{(j)}} \right) \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial \rho^{(j)}}^T{\partial r^{(i)} \over \partial \rho^{(j)}} \right)^{-1} \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial C}^T {\partial r^{(i)} \over \partial \rho^{(j)}} \right)^T\)。
accbc[tid].update(Hcd, p->bdSumF * p->HdiF)
是在accbc
中加上了针对当前点
的bc
,对应 \(\left( \sum_{i=1}^N {\partial r^{(i)} \over \partial C}^T {\partial r^{(i)} \over \partial \rho^{(j)}} \right) \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial \rho^{(j)}}^T{\partial r^{(i)} \over \partial \rho^{(j)}} \right)^{-1} \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial \rho^{(j)}}^T r^{(i)} \right)\)。
注意accE
, accEB
, accD
都是数组。
accE[tid][r1ht].update(r1->JpJdF, Hcd, p->HdiF)
是在accE[r1ht]
中加上了针对当前residual
(target, host)的 \(\left( {\partial r^{(k)} \over \partial X_{th}}^T {\partial r^{(k)} \over \partial \rho^{(j)}} \right) \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial \rho^{(j)}}^T{\partial r^{(i)} \over \partial \rho^{(j)}} \right)^{-1} \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial C}^T {\partial r^{(i)} \over \partial \rho^{(j)}} \right)^T\)。注,当前residual
的 index 是 k,联系 t, h 两个 frame。对当前点
的所有 residual 求和完成之后,accE[t, h]
对应 \(\left( \sum_{i=1}^N {\partial r^{(i)} \over \partial X_{th}}^T {\partial r^{(i)} \over \partial \rho^{(j)}} \right) \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial \rho^{(j)}}^T{\partial r^{(i)} \over \partial \rho^{(j)}} \right)^{-1} \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial C}^T {\partial r^{(i)} \over \partial \rho^{(j)}} \right)^T\)。
accEB[tid][r1ht].update(r1->JpJdF,p->HdiF*p->bdSumF)
是在accEB
中加上了针对当前residual
的 \(\left( {\partial r^{(k)} \over \partial X_{th}}^T {\partial r^{(k)} \over \partial \rho^{(j)}} \right) \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial \rho^{(j)}}^T{\partial r^{(i)} \over \partial \rho^{(j)}} \right)^{-1} \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial \rho^{(j)}}^T r^{(i)} \right)^T\)。注,当前residual
的 index 是 k,联系 t, h 两个 frame。对当前点
的所有 residual 求和完成之后,accEB[t, h]
对应 \(\left( \sum_{i=1}^N {\partial r^{(i)} \over \partial X_{th}}^T {\partial r^{(i)} \over \partial \rho^{(j)}} \right) \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial \rho^{(j)}}^T{\partial r^{(i)} \over \partial \rho^{(j)}} \right)^{-1} \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial \rho^{(j)}}^T r^{(i)} \right)^T\)。
accD[tid][r1ht+r2->targetIDX*nFrames2].update(r1->JpJdF, r2->JpJdF, p->HdiF)
对应当前residual``r1
与相同点
下所有residual``r2
(r1
, r2
可相同),即 h2 == h1 两个 residual 同 host。单个更新是在accD[t2,t1,h1]
加上的东西是 \(\left( {\partial r_1 \over \partial X_{t_1h_1}}^T {\partial r_1 \over \partial \rho^{(j)}} \right) \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial \rho^{(j)}}^T{\partial r^{(i)} \over \partial \rho^{(j)}} \right)^{-1} \left( {\partial r_2 \over \partial X_{t_2h_1}}^T {\partial r_2 \over \partial \rho^{(j)}} \right)^T\)。在对当前residual``r1
累加完成之后,accD[t2,t1,h1]
加上的东西是 \(\left( {\partial r_1 \over \partial X_{t_1h_1}}^T {\partial r_1 \over \partial \rho^{(j)}} \right) \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial \rho^{(j)}}^T{\partial r^{(i)} \over \partial \rho^{(j)}} \right)^{-1} \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial X_{t_2h_1}}^T {\partial r^{(i)} \over \partial \rho^{(j)}} \right)^T\)。 在对当前点
累加完成之后,accD[t2,t1,h1]
加上的东西是 \(\left( \sum_{i=1}^N {\partial r^{(i)} \over \partial X_{t_1h_1}}^T {\partial r^{(i)} \over \partial \rho^{(j)}} \right) \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial \rho^{(j)}}^T{\partial r^{(i)} \over \partial \rho^{(j)}} \right)^{-1} \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial X_{t_2h_1}}^T {\partial r^{(i)} \over \partial \rho^{(j)}} \right)^T\)。
4.1.3 更新完成后成员变量的意义
这个更新完成是指遍历了所有点之后,请结合 AccumulatedTopHessianSSE::stitchDouble 看。
所以accHcc
对应 \(\sum_{j=1}^M \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial C}^T {\partial r^{(i)} \over \partial \rho^{(j)}} \right) \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial \rho^{(j)}}^T{\partial r^{(i)} \over \partial \rho^{(j)}} \right)^{-1} \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial C}^T {\partial r^{(i)} \over \partial \rho^{(j)}} \right)^T\),4x4。
所以accbc
对应 \(\sum_{j=1}^M \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial C}^T {\partial r^{(i)} \over \partial \rho^{(j)}} \right) \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial \rho^{(j)}}^T{\partial r^{(i)} \over \partial \rho^{(j)}} \right)^{-1} \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial \rho^{(j)}}^T r^{(i)} \right)\),4x1。
所以accE[t,h]
(t 行 h 列)对应 \(\sum_{j=1}^M \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial X_{th}}^T {\partial r^{(i)} \over \partial \rho^{(j)}} \right) \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial \rho^{(j)}}^T{\partial r^{(i)} \over \partial \rho^{(j)}} \right)^{-1} \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial C}^T {\partial r^{(i)} \over \partial \rho^{(j)}} \right)^T\),8x4。
所以accEB[t,h]
对应 \(\sum_{j=1}^M \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial X_{th}}^T {\partial r^{(i)} \over \partial \rho^{(j)}} \right) \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial \rho^{(j)}}^T{\partial r^{(i)} \over \partial \rho^{(j)}} \right)^{-1} \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial \rho^{(j)}}^T r^{(i)} \right)^T\),8x1。
所以accD[t2,t1,h1]
对应 \(\sum_{j=1}^M \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial X_{t_1h_1}}^T {\partial r^{(i)} \over \partial \rho^{(j)}} \right) \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial \rho^{(j)}}^T{\partial r^{(i)} \over \partial \rho^{(j)}} \right)^{-1} \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial X_{t_2h_1}}^T {\partial r^{(i)} \over \partial \rho^{(j)}} \right)^T\)。
4.2 AccumulatedSCHessianSSE::stitchDoubleInternal()
优化信息统计
下面该乘 Adj(adHost, adTarget) 就乘,为了方便,我下面就不说了。
accHcc
加到Hsc.block<CPARS, CPARS>(0,0)
。
accbc
加到bsc.head<CPARS>()
。
accE[t,h]
加到Hsc.block<8, CPARS>(0,t*8)
, Hsc.block<8, CPARS>(0,h*8)
,以及转置后加到对角对称位置Hsc.block<CPARS, 8>(t*8,0)
, Hsc.block<CPARS, 8>(h*8,0)
。
accEB[t,h]
加到bsc.segment<8>(t*8)
, bsc.segment<8>(h*8)
。
accD[t2,t1,h1]
加到Hsc.block<8,8>(h1*8, h1*8)
, Hsc.block<8,8>(t1*8, t2*8)
, Hsc.block<8,8>(t1*8, h1*8)
, Hsc.block<8,8>(h1*8, t2*8)
。
Hsc.block<8,8>(t, h)
对应公式 \(\sum_{j=1}^M \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial X_{t}}^T {\partial r^{(i)} \over \partial \rho^{(j)}} \right) \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial \rho^{(j)}}^T{\partial r^{(i)} \over \partial \rho^{(j)}} \right)^{-1} \left( \sum_{i=1}^N {\partial r^{(i)} \over \partial X_{h}}^T {\partial r^{(i)} \over \partial \rho^{(j)}} \right)^T\)。