DSO windowed optimization 代码 (2)

3 非 Schur Complement 部分信息计算

参考《DSO windowed optimization 公式》,非Schur Complement 部分指 \(H_{XX}\)\(J^T_{X}r\)

3.1 AccumulatedTopHessianSSE::addPoint()优化的局部信息计算

EnergyFunctional::accumulateAF_MT() 与 EnergyFunctional::accumulateLF_MT() 遍历每一个点,对每一个点调用 AccumulatedTopHessianSSE::addPoint()。在 AccumulatedTopHessianSSE::addPoint() 中遍历点的每一个 residual。计算所有优化系统的信息,存储在每个点的局部变量和 EnergyFunctional 的局部变量中。

3.1.1 resApprox

首先搞定resApprox。由 VecNRf 可知,这东西是 8x1 的矩阵(也就是每个 residual 都是八个像素点的组合)。

https://github.com/JakobEngel/dso/blob/5fb2c065b1638e10bccf049a6575ede4334ba673/src/OptimizationBackend/AccumulatedTopHessian.cpp#L72

VecNRf resApprox;
if(mode==0) // active
  resApprox = rJ->resF;
if(mode==2) // marginalize
  resApprox = r->res_toZeroF;
if(mode==1) // linearized
{
  // compute Jp*delta
  __m128 Jp_delta_x = _mm_set1_ps(rJ->Jpdxi[0].dot(dp.head<6>())+rJ->Jpdc[0].dot(dc)+rJ->Jpdd[0]*dd);
  __m128 Jp_delta_y = _mm_set1_ps(rJ->Jpdxi[1].dot(dp.head<6>())+rJ->Jpdc[1].dot(dc)+rJ->Jpdd[1]*dd);
  __m128 delta_a = _mm_set1_ps((float)(dp[6]));
  __m128 delta_b = _mm_set1_ps((float)(dp[7]));

  for(int i=0;i<patternNum;i+=4)
  {
    // PATTERN: rtz = resF - [JI*Jp Ja]*delta.
    __m128 rtz = _mm_load_ps(((float*)&r->res_toZeroF)+i);
    rtz = _mm_add_ps(rtz,_mm_mul_ps(_mm_load_ps(((float*)(rJ->JIdx))+i),Jp_delta_x));
    rtz = _mm_add_ps(rtz,_mm_mul_ps(_mm_load_ps(((float*)(rJ->JIdx+1))+i),Jp_delta_y));
    rtz = _mm_add_ps(rtz,_mm_mul_ps(_mm_load_ps(((float*)(rJ->JabF))+i),delta_a));
    rtz = _mm_add_ps(rtz,_mm_mul_ps(_mm_load_ps(((float*)(rJ->JabF+1))+i),delta_b));
    _mm_store_ps(((float*)&resApprox)+i, rtz);
  }
}

Residual 有三种情况:

  1. active 情况最简单,直接是 residual。
  2. marginalize 的情况比较复杂,res_toZeroF 在EFResidual::fixLinearizationF()赋值,而 res_toZeroF 与下面计算的 rtz 是类似的。
  3. linearized 在这里已经给出了其赋值的方法,下面会说到,linearized residual 是不存在的。

所谓的 linearied residual 是指 EFResidual::isActive() 与 EFResidual::isLinearized 都为 true 的 Residual。初始阶段 isLinearized 为 false,只要搞清楚 isLinearized 在什么时候设置为 true 就可以了解到 linearized residual 是何种意思。查找了 EFResidual::isLinearized 只在 EFResidual::fixLinearizationF 中设置为 true,而 EFResidual::fixLinearizationF() 仅仅只在 FullSystem::flagPointsForRemoval() 中调用。在此处,将那些符合 2 种情况(1. 因为 residual 太少造成了 Out Of Boundary(这里考虑到将要被 marginalize 掉的帧的影响),2. 主帧要被 marginalize 掉)的点的 residual 设置为 linearized。但是这些点紧接着又会在 EnergyFunctional::marginalizePointsF() 中被 marg 掉,被删除掉。最终也没有进入 FullSystem::optimize() 的优化过程中。我在 AccumulatedTopHessianSSE::addPoint() 的这个位置设置了 conditional breakpoint (mode==1),或者assert(mode!=1),实验证明 linearized residual 是不存在的。

  1. active residual 时,resApprox对应的就是简单的 \(r_{21}\)

  2. linearized residual 时,还要看这个代码是什么意思。

\(\begin{bmatrix} \text{Jp_delta_x} \\ \text{Jp_delta_y} \end{bmatrix} = {\partial x_2 \over \partial \xi_1}{\delta \xi_1} + {\partial x_2 \over \partial \xi_2}{\delta \xi_2} + {\partial x_2 \over \partial C}{\delta C} + {\partial x_2 \over \partial \rho_1}{\delta \rho_1}\)

\(\begin{bmatrix} \text{delta_a} \\ \text{delta_b}\end{bmatrix} = {\partial l_{21} \over \partial l_1}{\delta l_1} + {\partial l_{21} \over \partial l_2}{\delta l_2}\)

\(\text{rtz} = {\partial r_{21} \over \partial \xi_1}{\delta \xi_1} + {\partial r_{21} \over \partial \xi_2}{\delta \xi_2} + {\partial r_{21} \over \partial C}{\delta C} + {\partial r_{21} \over \partial \rho_1}{\delta \rho_1} + {\partial r_{21} \over \partial l_1}{\delta l_1} + {\partial r_{21} \over \partial l_2}{\delta l_2}\)

res_toZeroFrtz相同。resApprox = res_toZeroF + rtz

3.1.2 acc

在 AccumulatedTopHessianSSE::addPoint() 函数计算了 Hessian 矩阵。而这里的 Hessian 矩阵是存储了两个帧之间的相互信息,所有的信息存储在 AccumulatedTopHessianSSE::acc 中,acc是一个数组,大小是 8*8 个,位置 (i, j) 上对应的是 i 帧与 j 帧的相互信息。

AccumulatorApprox 也就是AccumulatedTopHessianSSE::acc 变量的“基础”类型。这个类型对应着 13x13 的矩阵。这个矩阵经过阅读代码,可以知道存储的是以下信息。

\[H = \begin{bmatrix} J^T \\ r^T \end{bmatrix}\begin{bmatrix} J & r \end{bmatrix} \]

\[J = \begin{bmatrix} {\partial r_{21} \over \partial C}_{8\times4} & {\partial r_{21} \over \partial \xi_{21}}_{8\times6} & {\partial r_{21} \over \partial l_{21}}_{8\times2} \end{bmatrix}_{8\times12} \]

\[r = \begin{bmatrix} r_{21} \end{bmatrix}_{8\times1} \]

\[\begin{align} H &= \begin{bmatrix} J^T \\ r^T \end{bmatrix}\begin{bmatrix} J & r \end{bmatrix}\notag \\ &= \begin{bmatrix} {\partial r_{21} \over \partial C}^T_{4\times8} \\ {\partial r_{21} \over \partial \xi_{21}}^T_{6\times8} \\ {\partial r_{21} \over \partial l_{21}}^T_{2\times8} \\ {r_{21}}^T_{1\times8} \end{bmatrix} \begin{bmatrix} {\partial r_{21} \over \partial C}_{8\times4} & {\partial r_{21} \over \partial \xi_{21}}_{8\times6} & {\partial r_{21} \over \partial l_{21}}_{8\times2} & {r_{21}}_{8\times1}\end{bmatrix} \notag \\ &= \begin{bmatrix} {{\partial r_{21} \over \partial C}^T{\partial r_{21} \over \partial C}}_{4\times4} & {{\partial r_{21} \over \partial C}^T{\partial r_{21} \over \partial \xi_{21}}}_{4\times6} & {{\partial r_{21} \over \partial C}^T{\partial r_{21} \over \partial l_{21}}}_{4\times2} & {{\partial r_{21} \over \partial C}^T{r_{21}}}_{4\times1} \\ {{\partial r_{21} \over \partial \xi_{21}}^T{\partial r_{21} \over \partial C}}_{6\times4} & {{\partial r_{21} \over \partial \xi_{21}}^T{\partial r_{21} \over \partial \xi_{21}}}_{6\times6} & {{\partial r_{21} \over \partial \xi_{21}}^T{\partial r_{21} \over \partial l_{21}}}_{6\times2} & {{\partial r_{21} \over \partial \xi_{21}}^T{r_{21}}}_{6\times1} \\ {{\partial r_{21} \over \partial l_{21}}^T{\partial r_{21} \over \partial C}}_{2\times4} & {{\partial r_{21} \over \partial l_{21}}^T{\partial r_{21} \over \partial \xi_{21}}}_{2\times6} & {{\partial r_{21} \over \partial l_{21}}^T{\partial r_{21} \over \partial l_{21}}}_{2\times2} & {{\partial r_{21} \over \partial l_{21}}^T{r_{21}}}_{2\times1} \\ {{r_{21}}^T{\partial r_{21} \over \partial C}}_{1\times4} & {{r_{21}}^T{\partial r_{21} \over \partial \xi_{21}}}_{1\times6} & {{r_{21}}^T{\partial r_{21} \over \partial l_{21}}}_{1\times2} & {{r_{21}}^T{r_{21}}}_{1\times1} \end{bmatrix} \notag \end{align}\]

代码中的BotRight对应矩阵右下角 3x3 的分块:

\[\begin{bmatrix} {{\partial r_{21} \over \partial l_{21}}^T{\partial r_{21} \over \partial l_{21}}}_{2\times2} & {{\partial r_{21} \over \partial l_{21}}^T{r_{21}}}_{2\times1} \\ {{r_{21}}^T{\partial r_{21} \over \partial l_{21}}}_{1\times2} & {{r_{21}}^T{r_{21}}}_{1\times1} \end{bmatrix} \]

TopRight对应矩阵右上角 10x3 的分块:

\[\begin{bmatrix} {{\partial r_{21} \over \partial C}^T{\partial r_{21} \over \partial l_{21}}}_{4\times2} & {{\partial r_{21} \over \partial C}^T{r_{21}}}_{4\times1} \\ {{\partial r_{21} \over \partial \xi_{21}}^T{\partial r_{21} \over \partial l_{21}}}_{6\times2} & {{\partial r_{21} \over \partial \xi_{21}}^T{r_{21}}}_{6\times1} \end{bmatrix} \]

Data对应左上角 10x10 的分块:

\[\begin{bmatrix} {{\partial r_{21} \over \partial C}^T{\partial r_{21} \over \partial C}}_{4\times4} & {{\partial r_{21} \over \partial C}^T{\partial r_{21} \over \partial \xi_{21}}}_{4\times6} \\ {{\partial r_{21} \over \partial \xi_{21}}^T{\partial r_{21} \over \partial C}}_{6\times4} & {{\partial r_{21} \over \partial \xi_{21}}^T{\partial r_{21} \over \partial \xi_{21}}}_{6\times6} \end{bmatrix} \]

这个 AccumulatorApprox 中存储的 13x13 矩阵并不是优化过程中整体的大矩阵,只是对应着窗口中两帧之间的相互信息。注意到代码中计算调用acc变量时是这么调用的acc[tid][htIDX]int htIDX = r->hostIDX + r->targetIDX * nframes[tid];,不考虑tid线程编号,acc共有8*8=64个。

继续讲完 AccumulatedTopHessianSSE::addPoint 函数。

函数的目标除了计算不同帧之间的相互信息(变量acc),还需要计算每一个点对于所有 residual 的信息和。即EFPoint中的成员变量Hdd_accAF, bd_accAF, Hcd_accAF, Hdd_accLF, bd_accLF, Hcd_accLF,如果这个点是 active 点,那么设置AF相关的变量,否则设置LF相关变量,如果是 marginalize 点,清除AF相关变量的信息。这三个成员变量将用于计算逆深度的优化量。

局部变量Hdd_acc, bd_acc, Hcd_acc对应着这些EFPoint的成员变量,最后赋值到成员变量。

3.1.3 bd_acc, Hdd_acc, Hcd_acc

https://github.com/JakobEngel/dso/blob/5fb2c065b1638e10bccf049a6575ede4334ba673/src/OptimizationBackend/AccumulatedTopHessian.cpp#L128

JI_r[0] += resApprox[i] *rJ->JIdx[0][i];
JI_r[1] += resApprox[i] *rJ->JIdx[1][i];
...
Vec2f Ji2_Jpdd = rJ->JIdx2 * rJ->Jpdd;
bd_acc +=  JI_r[0]*rJ->Jpdd[0] + JI_r[1]*rJ->Jpdd[1];
Hdd_acc += Ji2_Jpdd.dot(rJ->Jpdd);
Hcd_acc += rJ->Jpdc[0]*Ji2_Jpdd[0] + rJ->Jpdc[1]*Ji2_Jpdd[1];

JI_r对应 \({\partial r_{21} \over \partial x_2}^T({\partial r_{21} \over \partial \xi_1}{\delta \xi_1} + {\partial r_{21} \over \partial \xi_2}{\delta \xi_2} + {\partial r_{21} \over \partial C}{\delta C} + {\partial r_{21} \over \partial \rho_1}{\delta \rho_1} + {\partial r_{21} \over \partial l_1}{\delta l_1} + {\partial r_{21} \over \partial l_2}{\delta l_2})\),2x1。

Ji2_Jpdd对应 \({\partial r_{21} \over \partial x_2}^T{\partial r_{21} \over \partial \rho_1}\),2x1。

bd_acc对应(1)active 时,\({\partial r_{21} \over \partial \rho_1}^Tr_{21}\);(2)marginalize 时,\({\partial r_{21} \over \partial \rho_1}^T({\partial r_{21} \over \partial \xi_1}{\delta \xi_1} + {\partial r_{21} \over \partial \xi_2}{\delta \xi_2} + {\partial r_{21} \over \partial C}{\delta C} + {\partial r_{21} \over \partial \rho_1}{\delta \rho_1} + {\partial r_{21} \over \partial l_1}{\delta l_1} + {\partial r_{21} \over \partial l_2}{\delta l_2})\)。1x1。

Hdd_acc对应 \({\partial r_{21} \over \partial \rho_1}^T{\partial r_{21} \over \partial \rho_1}\),1x1。

Hcd_acc对应 \({\partial r_{21} \over \partial C}^T{\partial r_{21} \over \partial \rho_1}\),4x1。

3.2 AccumulatedTopHessianSSE::stitchDoubleInternal()优化信息统计

循环for(int k=min;k<max;k++)循环是遍历所有可能的 (host_frame,target_frame) 组合。

内层循环累积计算accH就不用看了,这个循环是用于累加多个线程的结果,accH就是acc[h+nframes*t],参照 3.1。

下面的H(对应 \(H_{XX}\))和b(对应 \(J^T_{X}r\))的累加,使用了 EnergyFunctional::adHost 和 EnergyFunctional::adTarget。这是因为前面计算的 Jacobian 都是对相对状态的偏导,这两个变量存储的是相对状态对绝对状态的偏导。

adHost[h+nframes*t]下标是 (t,h),对应公式 \({\partial X_R^{(th)} \over \partial X_R^{(h)}}^T\)

adTarget[h+nframes*t]下标是 (t,h),对应公式 \({\partial X_R^{(th)} \over \partial X_R^{(t)}}^T\)

\(X_R^{(i)}\) 是 i 帧的所有状态,包括 se(3) 和 AffLight 参数,即 \(\begin{bmatrix} \xi_i \\ l_i \end{bmatrix}\)

posted @ 2018-03-16 22:34  JingeTU  阅读(3164)  评论(2编辑  收藏  举报