DSO windowed optimization 代码 (1)
这里不想解释怎么 marginalize,什么是 First-Estimates Jacobian (FEJ)。这里只看看代码,看看Hessian矩阵是怎么构造出来的。
1 优化流程
整个优化过程,也是 Levenberg–Marquardt 的优化过程,这个优化过程在函数 FullSystem::makeKeyFrame() 中被调用,也是在确定当前帧成为关键帧,并且用当前帧激活了窗口中其他帧的 immaturePoints 之后。过程在 FullSystem::optimize() 函数中。
优化的目标值,是所有需要优化点的逆深度、相机的4个内参数、窗口中8个帧的状态量。
FullSystem::optimize() 函数流程大致如下。首先 FullSystem::linearizeAll(false) 把相关的导数计算一下。然后在所有的 residual 中找到 isLinearized 为 false 的 residual,调用 PointFrameResidual::applyRes(true),设置它们的 PointFrameResidual::ResState (按照 FullSystem::optimizeImmaturePoint 的结果),如果是正常的点(ResState::IN)调用EFResidual::takeDataF()把 EFResidual::JpJdF 设置一下。这就算完成了优化的准备工作。
随后进入循环体,进行最高有限次的优化循环。每一次优化都有可能使得整体能量升高,所以每次优化前调用 FullSystem::backupState() 保存当前所有待优化参数的 state 和 step,FullSystem::solveSystem() 进行优化(得到的优化变化量 step),FullSystem::doStepFromBackup() 将优化结果生效,FullSystem::linearizeAll(false) 计算新的能量值,如果能量升高了,就使用 FullSystem::loadSateBackup() 将结果回滚。
在跳出循环体之后调用一次 FullSystem::linearizeAll(true),效果是将优化之后成为 outlier 的 residual 剔除,剩下正常的 residual 调用一次 EFResidual::takeDataF() 计算新的 EFResidual::JpJdF (这里涉及到 FEJ)。注意一下 FullSystem::linearizeAll() 参数为 false 和 true 的区别。
FullSystem::solveSystem() 设置优化变化量 step 的过程在 EnergyFunctional::resubstituteF_MT() 中,能帮助理解 idepth 是如何更新的(Schur Complement 将 idepth 剔除出最终需要矩阵求逆的系统,然而这些 idepth 的优化变化量 step 是如何计算的?)。
2 导数准备
需要遍历每一个 PointFrameResidual 将与这个 Residual 相关的导数计算出来,再进行优化。而这些计算出来的相关导数被存储在 RawResidualJacobian 中。
https://github.com/JakobEngel/dso/blob/master/src/OptimizationBackend/RawResidualJacobian.h#L32
在优化过程中 Frame, PointHessian, PointFrameResidual 都有与之对应的实体,分别是 EFFrame, EFPoint, EFResidual。通过保留指针,保存层次之间的索引。
在计算 RawResidualJacobian 时,是计算 PointFrameResidual 的 J,尔后会将这个 J 转移到 EFResidual 的 J,并且计算 EFResidual::JpJdF,这个过程在 EFResidual::takeDataF() 中。所以这里把 JpJdF 的计算过程写出来,弄清 JpJdF 的意义。
struct RawResidualJacobian
{
EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
// ================== new structure: save independently =============.
VecNRf resF; // typdef Eigen::Matrix<float,MAX_RES_PER_POINT,1> VecNRf; MAX_RES_PER_POINT == 8
// the two rows of d[x,y]/d[xi].
Vec6f Jpdxi[2]; // 2x6
// the two rows of d[x,y]/d[C].
VecCf Jpdc[2]; // 2x4
// the two rows of d[x,y]/d[idepth].
Vec2f Jpdd; // 2x1
// the two columns of d[r]/d[x,y].
VecNRf JIdx[2]; // 9x2
// = the two columns of d[r] / d[ab]
VecNRf JabF[2]; // 9x2
// = JIdx^T * JIdx (inner product). Only as a shorthand.
Mat22f JIdx2; // 2x2
// = Jab^T * JIdx (inner product). Only as a shorthand.
Mat22f JabJIdx; // 2x2
// = Jab^T * Jab (inner product). Only as a shorthand.
Mat22f Jab2; // 2x2
};
以上变量的类型中出现NR
,说明该变量是存储了每一个 pattern 点的信息。
现在将这些变量对应的导数一一列出:
VecNRf resF;
对应\(r_{21}\),1x8,这里的\(r_{21}\)是对于一个点,八个 pattern residual 组成的向量。Vec6f Jpdxi[2];
对应\(\partial x_2 \over \partial \xi_{21}\),2x6,注意这里的\(x_2\)是像素坐标。(我一般把像素坐标写成\(x\),对应代码中的变量Ku
,归一化坐标写成\(x^{\prime}\),对应代码中的变量u
。)VecCf Jpdc[2];
对应\(\partial x_2 \over \partial C\),2x4,这里的\(C\)指相机内参\(\begin{bmatrix} f_x, f_y, c_x, c_y\end{bmatrix}^T\)。Vec2f Jpdd;
对应\(\partial x_2 \over \partial \rho_1\),2x1,注意是对 host 帧的逆深度求导。VecNRf JIdx[2];
对应\(\partial r_{21} \over \partial x_2\),8x2,这个和 target 帧上的影像梯度相关。VecNRf JabF[2];
对应\({\partial r_{21} \over \partial a_{21}}, {\partial r_{21} \over \partial b_{21}}\),8x1,8x1。Mat22f JIdx2;
对应\({\partial r_{21} \over \partial x_2}^T{\partial r_{21} \over \partial x_2}\),2x8 8x2,2x2。Mat22f JabJIdx;
对应\({\partial r_{21} \over \partial l_{21}}^T{\partial r_{21} \over \partial x_2}\),2x8 8x2,2x2,这里的\(l_{21}\)指\(\begin{bmatrix} a_{21} \\ b_{21}\end{bmatrix}\)。Mat22f Jab2;
对应\({\partial r_{21} \over \partial l_{21}}^T{\partial r_{21} \over \partial l_{21}}\),2x8 8x2,2x2。JpJdF
对应\(\begin{bmatrix} {\partial r_{21} \over \partial \xi_{21}}^T{\partial r_{21} \over \partial \rho_1} \\ {\partial r_{21} \over \partial l_{21}}^T{\partial r_{21} \over \partial \rho_1}\end{bmatrix}\),8x1。
在 PointFrameResidual::linearize 中对这些变量进行了计算。
https://github.com/JakobEngel/dso/blob/master/src/FullSystem/Residuals.cpp#L78
在计算时使用了投影过程中的变量,现在将这些变量与公式对应。投影过程标准公式如下:
变量的对应关系如下:
KliP
= \(K^{-1}x_1\) = \(x_1^{\prime}\)
ptp
= \(R_{21}K^{-1}x_1 + \rho_1 t_{21}\) = \(\rho_2^{-1}\rho_1K^{-1}x_2\)
drescale
= \(\rho_2 \rho_1^{-1}\)
[u
, v
, 1]^T = \(K^{-1}x_2\) = \(x_2^{\prime}\)
[Ku
, Kv
, 1]^T = \(x_2\)
1. Vec2f Jpdd;
\(\partial x_2 \over \partial \rho_1\)
d_d_x = drescale * (PRE_tTll_0[0]-PRE_tTll_0[2]*u)*SCALE_IDEPTH*HCalib->fxl();
d_d_y = drescale * (PRE_tTll_0[1]-PRE_tTll_0[2]*v)*SCALE_IDEPTH*HCalib->fyl();
计算\(\partial x_2 \over \partial \rho_1\),这个在博客《直接法光度误差导数推导》中已经讲了如何求解。得到的结果是:
2.VecCf Jpdc[2];
\(\partial x_2 \over \partial C\)
d_C_x[2] = drescale*(PRE_RTll_0(2,0)*u-PRE_RTll_0(0,0));
d_C_x[3] = HCalib->fxl() * drescale*(PRE_RTll_0(2,1)*u-PRE_RTll_0(0,1)) * HCalib->fyli();
d_C_x[0] = KliP[0]*d_C_x[2];
d_C_x[1] = KliP[1]*d_C_x[3];
d_C_y[2] = HCalib->fyl() * drescale*(PRE_RTll_0(2,0)*v-PRE_RTll_0(1,0)) * HCalib->fxli();
d_C_y[3] = drescale*(PRE_RTll_0(2,1)*v-PRE_RTll_0(1,1));
d_C_y[0] = KliP[0]*d_C_y[2];
d_C_y[1] = KliP[1]*d_C_y[3];
d_C_x[0] = (d_C_x[0]+u)*SCALE_F;
d_C_x[1] *= SCALE_F;
d_C_x[2] = (d_C_x[2]+1)*SCALE_C;
d_C_x[3] *= SCALE_C;
d_C_y[0] *= SCALE_F;
d_C_y[1] = (d_C_y[1]+v)*SCALE_F;
d_C_y[2] *= SCALE_C;
d_C_y[3] = (d_C_y[3]+1)*SCALE_C;
链式的求导过程。
先求\({\partial x_2^{\prime} \over \partial C}\),再使用链式法则求\({\partial x_2 \over \partial C}\)。
\(u_2^{\prime}, v_2^{\prime}\) 的分母的计算结果都为 1,但是这个计算过程和内参 \(f_x, f_y, c_x, c_y\) 都有关系。求导过程不能省略分母,感谢某同学指出我这里认知上的错误。(为方便表达,我用字母替代分子、分母,\(C=1\)。)
求导示例:
同理得到以下结果:
链式:
3. Vec6f Jpdxi[2];
\(\partial x_2 \over \partial \xi_{21}\)
d_xi_x[0] = new_idepth*HCalib->fxl();
d_xi_x[1] = 0;
d_xi_x[2] = -new_idepth*u*HCalib->fxl();
d_xi_x[3] = -u*v*HCalib->fxl();
d_xi_x[4] = (1+u*u)*HCalib->fxl();
d_xi_x[5] = -v*HCalib->fxl();
d_xi_y[0] = 0;
d_xi_y[1] = new_idepth*HCalib->fyl();
d_xi_y[2] = -new_idepth*v*HCalib->fyl();
d_xi_y[3] = -(1+v*v)*HCalib->fyl();
d_xi_y[4] = u*v*HCalib->fyl();
d_xi_y[5] = u*HCalib->fyl();
计算\(\partial x_2 \over \partial \xi_{21}\),这个在博客《直接法光度误差导数推导》中已经讲了如何求解。得到的结果是:
4. VecNRf JIdx[2];
对应 \(\partial r_{21} \over \partial x_2\)
J->JIdx[0][idx] = hitColor[1];
J->JIdx[1][idx] = hitColor[2];
计算\(\partial r_{21} \over \partial x_2\),这个在博客《直接法光度误差导数推导》中已经讲了如何求解。得到的结果是:
注意代码中这个变量是8维。
5. VecNRf JabF[2];
\({\partial r_{21} \over \partial a_{21}}, {\partial r_{21} \over \partial b_{21}}\)
float drdA = (color[idx]-b0);
...
J->JabF[0][idx] = drdA*hw;
J->JabF[1][idx] = hw;
计算\({\partial r_{21} \over \partial l_{21}}\),这个在博客《直接法光度误差导数推导》中已经讲了如何求解。得到的结果是(结果有点不符合,需要再对照一下):
10. JpJdF
对应 \(\begin{bmatrix} {\partial r_{21} \over \partial \xi_{21}}^T{\partial r_{21} \over \partial \rho_1} \\ {\partial r_{21} \over \partial l_{21}}^T{\partial r_{21} \over \partial \rho_1}\end{bmatrix}\)
void EFResidual::takeDataF()
{
std::swap<RawResidualJacobian*>(J, data->J);
Vec2f JI_JI_Jd = J->JIdx2 * J->Jpdd;
for(int i=0;i<6;i++)
JpJdF[i] = J->Jpdxi[0][i]*JI_JI_Jd[0] + J->Jpdxi[1][i] * JI_JI_Jd[1];
JpJdF.segment<2>(6) = J->JabJIdx*J->Jpdd;
}
JI_JI_Jd
对应\({\partial r_{21} \over \partial x_2}^T{\partial r_{21} \over \partial \rho_1}\),2x8 8x1,2x1。JpJdF.segment<6>(0)
对应\({\partial x_2 \over \partial \xi_{21}}^T{\partial r_{21} \over \partial x_2}^T{\partial r_{21} \over \partial \rho_1} = {\partial r_{21} \over \partial \xi_{21}}^T{\partial r_{21} \over \partial \rho_1}\),6x2 2x8 8x1,6x1。JpJdF.segment<2>(6)
对应\({\partial r_{21} \over \partial l_{21}}^T{\partial r_{21} \over \partial x_2}{\partial x_2 \over \partial \rho_1} = {\partial r_{21} \over \partial l_{21}}^T{\partial r_{21} \over \partial \rho_1}\),2x8 8x2 2x1,2x1。JpJdF
对应\(\begin{bmatrix} {\partial r_{21} \over \partial \xi_{21}}^T{\partial r_{21} \over \partial \rho_1} \\ {\partial r_{21} \over \partial l_{21}}^T{\partial r_{21} \over \partial \rho_1}\end{bmatrix}\),8x1。