原文链接:http://blog.csdn.net/zzxap/article/details/5746425

作者:zzxap

 

1Like语句是否属于SARG取决于所使用的通配符的类型
如:name like ‘%’ ,这就属于SARG
而:name like ‘%’ ,就不属于SARG
原因是通配符%在字符串的开通使得索引无法使用。
2
or 会引起全表扫描
  Name=’张三’ and 价格>5000 符号SARG,而:Name=’张三’ or 价格>5000 则不符合SARG。使用or会引起全表扫描。
3
、非操作符、函数引起的不满足SARG形式的语句
  不满足SARG形式的语句最典型的情况就是包括非操作符的语句,如:NOT!=<>!<!>NOT EXISTSNOT INNOT LIKE等,另外还有函数。下面就是几个不满足SARG形式的例子:
ABS(
价格)<5000
Name like ‘%

有些表达式,如:
WHERE
价格*2>5000
SQL SERVER
也会认为是SARGSQL SERVER会将此式转化为:
WHERE
价格>2500/2
但我们不推荐这样使用,因为有时SQL SERVER不能保证这种转化与原始表达式是完全等价的。
4
IN 的作用相当与OR
语句:
Select * from table1 where tid in (2,3)

Select * from table1 where tid=2 or tid=3
是一样的,都会引起全表扫描,如果tid上有索引,其索引也会失效。
5
、尽量少用NOT
6
exists in 的执行效率是一样的
  很多资料上都显示说,exists要比in的执行效率要高,同时应尽可能的用not exists来代替not in。但事实上,我试验了一下,发现二者无论是前面带不带not,二者之间的执行效率都是一样的。因为涉及子查询,我们试验这次用SQL SERVER自带的pubs数据库。运行前我们可以把SQL SERVERstatistics I/O状态打开:
1select title,price from titles where title_id in (select title_id from sales where qty>30)
该句的执行结果为:
''sales''。扫描计数 18,逻辑读 56 次,物理读 0 次,预读 0 次。
''titles''。扫描计数 1,逻辑读 2 次,物理读 0 次,预读 0 次。
2select title,price from titles
  where exists (select * from sales
  where sales.title_id=titles.title_id and qty>30)
第二句的执行结果为:
''sales''。扫描计数 18,逻辑读 56 次,物理读 0 次,预读 0 次。
''titles''。扫描计数 1,逻辑读 2 次,物理读 0 次,预读 0 次。
我们从此可以看到用exists和用in的执行效率是一样的。
7
、用函数charindex()和前面加通配符%LIKE执行效率一样
  前面,我们谈到,如果在LIKE前面加上通配符%,那么将会引起全表扫描,所以其执行效率是低下的。但有的资料介绍说,用函数charindex()来代替LIKE速度会有大的提升,经我试验,发现这种说明也是错误的:
select gid,title,fariqi,reader from tgongwen
  where charindex(''刑侦支队'',reader)>0 and fariqi>''2004-5-5''
用时:7秒,另外:扫描计数 4,逻辑读 7155 次,物理读 0 次,预读 0 次。
select gid,title,fariqi,reader from tgongwen
  where reader like ''%'' + ''刑侦支队'' + ''%'' and fariqi>''2004-5-5''
用时:7秒,另外:扫描计数 4,逻辑读 7155 次,物理读 0 次,预读 0 次。
8
union并不绝对比or的执行效率高
  我们前面已经谈到了在where子句中使用or会引起全表扫描,一般的,我所见过的资料都是推荐这里用union来代替or。事实证明,这种说法对于大部分都是适用的。
select gid,fariqi,neibuyonghu,reader,title from Tgongwen
  where fariqi=''2004-9-16'' or gid>9990000
用时:68秒。扫描计数 1,逻辑读 404008 次,物理读 283 次,预读 392163 次。
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi=''2004-9-16''
union
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where gid>9990000
用时:9秒。扫描计数 8,逻辑读 67489 次,物理读 216 次,预读 7499 次。
看来,用union在通常情况下比用or的效率要高的多。
  但经过试验,笔者发现如果or两边的查询列是一样的话,那么用union则反倒和用or的执行速度差很多,虽然这里union扫描的是索引,而or扫描的是全表。
select gid,fariqi,neibuyonghu,reader,title from Tgongwen
  where fariqi=''2004-9-16'' or fariqi=''2004-2-5''
用时:6423毫秒。扫描计数 2,逻辑读 14726 次,物理读 1 次,预读 7176 次。
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi=''2004-9-16''
union
select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi=''2004-2-5''
用时:11640毫秒。扫描计数 8,逻辑读 14806 次,物理读 108 次,预读 1144 次。
9
、字段提取要按照需多少、提多少的原则,避免“select *”
  我们来做一个试验:
select top 10000 gid,fariqi,reader,title from tgongwen order by gid desc
用时:4673毫秒
select top 10000 gid,fariqi,title from tgongwen order by gid desc
用时:1376毫秒
select top 10000 gid,fariqi from tgongwen order by gid desc
用时:80毫秒
  由此看来,我们每少提取一个字段,数据的提取速度就会有相应的提升。提升的速度还要看您舍弃的字段的大小来判断。
10
count(*)不比count(字段)
  某些资料上说:用*会统计所有列,显然要比一个世界的列名效率低。这种说法其实是没有根据的。我们来看:
select count(*) from Tgongwen
用时:1500毫秒
select count(gid) from Tgongwen
用时:1483毫秒
select count(fariqi) from Tgongwen
用时:3140毫秒
select count(title) from Tgongwen
用时:52050毫秒
  从以上可以看出,如果用count(*)和用count(主键)的速度是相当的,而count(*)却比其他任何除主键以外的字段汇总速度要快,而且字段越长,汇总的速度就越慢。我想,如果用count(*) SQL SERVER可能会自动查找最小字段来汇总的。当然,如果您直接写count(主键)将会来的更直接些。
11
order by按聚集索引列排序效率最高
  我们来看:(gid是主键,fariqi是聚合索引列):
select top 10000 gid,fariqi,reader,title from tgongwen
用时:196 毫秒。 扫描计数 1,逻辑读 289 次,物理读 1 次,预读 1527 次。
select top 10000 gid,fariqi,reader,title from tgongwen order by gid asc
用时:4720毫秒。 扫描计数 1,逻辑读 41956 次,物理读 0 次,预读 1287 次。
select top 10000 gid,fariqi,reader,title from tgongwen order by gid desc
用时:4736毫秒。 扫描计数 1,逻辑读 55350 次,物理读 10 次,预读 775 次。
select top 10000 gid,fariqi,reader,title from tgongwen order by fariqi asc
用时:173毫秒。 扫描计数 1,逻辑读 290 次,物理读 0 次,预读 0 次。
select top 10000 gid,fariqi,reader,title from tgongwen order by fariqi desc
用时:156毫秒。 扫描计数 1,逻辑读 289 次,物理读 0 次,预读 0 次。
  从以上我们可以看出,不排序的速度以及逻辑读次数都是和“order by 聚集索引列的速度是相当的,但这些都比“order by 非聚集索引列的查询速度是快得多的。
  同时,按照某个字段进行排序的时候,无论是正序还是倒序,速度是基本相当的。
12
、高效的TOP
  事实上,在查询和提取超大容量的数据集时,影响数据库响应时间的最大因素不是数据查找,而是物理的I/0操作。如:
select top 10 * from (
   select top 10000 gid,fariqi,title from tgongwen
   where neibuyonghu=''
办公室''
   order by gid desc) as a
order by gid asc
  这条语句,从理论上讲,整条语句的执行时间应该比子句的执行时间长,但事实相反。因为,子句执行后返回的是10000条记录,而整条语句仅返回10条语句,所以影响数据库响应时间最大的因素是物理I/O操作。而限制物理I/O操作此处的最有效方法之一就是使用TOP关键词了。TOP关键词是SQL SERVER中经过系统优化过的一个用来提取前几条或前几个百分比数据的词。经笔者在实践中的应用,发现TOP确实很好用,效率也很高。但这个词在另外一个大型数据库ORACLE中却没有,这不能说不是一个遗憾,虽然在ORACLE中可以用其他方法(如:rownumber)来解决。在以后的关于实现千万级数据的分页显示存储过程的讨论中,我们就将用到TOP这个关键词。
  到此为止,我们上面讨论了如何实现从大容量的数据库中快速地查询出您所需要的数据方法。当然,我们介绍的这些方法都是方法,在实践中,我们还要考虑各种因素,如:网络性能、服务器的性能、操作系统的性能,甚至网卡、交换机等。

 posted on 2011-07-08 23:50  冷酒少  阅读(463)  评论(0编辑  收藏  举报