实验3:OpenFlow协议分析实践

一、实验目的

  1. 能够运用 wireshark 对 OpenFlow 协议数据交互过程进行抓包;
  2. 能够借助包解析工具,分析与解释 OpenFlow协议的数据包交互过程与机制。

二、实验环境

  1. 下载虚拟机软件Oracle VisualBox;
  2. 在虚拟机中安装Ubuntu 20.04 Desktop amd64,并完整安装Mininet;

三、实验要求

(一)基本要求

  1. 搭建下图所示拓扑,完成相关 IP 配置,并实现主机与主机之间的 IP 通信。用抓包软件获取控制器与交换机之间的通信数据包。
    img

    • 使用Miniedit构建拓扑结构:

    • 设置IP地址段和子网掩码:

    • 按要求修改主机地址等

    • 也可以在第一次实验拓扑结果的基础上直接修改:

  2. 查看抓包结果,分析OpenFlow协议中交换机与控制器的消息交互过程,画出相关交互图或流程图。

    • 运行wireshark,选择any模式,运行1.中的拓扑结构,并输入pingall命令。

    • 查看抓包结果:

      1. OFPT_HELLO:

        从控制器6633端口到交换机43544端口,使用OpenFlow1.0协议:

        从交换机43544端口到控制器6633端口,使用OpenFlow1.5协议:

        OFPT_HELLO后双方协定使用OpenFlow1.0协议。

      2. OFPT_FEATURES_REQUEST

        从控制器6633端口到交换机43544端口,请求特征信息。

      3. OFPT_SET_CONFIG:

        从控制器6633接口到交换机43544端口

      4. OFPT_PORT_STATUS:

        从交换机43544端口到控制器6633端口当交换机端口发生变化时,告知控制器相应的端口状态。

      5. OFPT_FEATURES_REPLY:

        交换机43544端口到控制器6633端口,回复特征信息。

      6. OFPT_PACKET_IN:

        分析抓取的数据包。

      7. OFPT_FLOW_MOD:

        分析抓取的flow_mod数据包,控制器通过6633端口向交换机43546端口下发流表项,指导数据的转发处理。

      8. OFPT_PACKET_OUT:

        控制器6633端口向交换机43546端口发送数据,并告知交换机输出到65531端口。

    1. 流程图:
  3. 回答问题:交换机与控制器建立通信时是使用TCP协议还是UDP协议?

    使用TCP协议,可以在抓取的数据包中体现

    也可以直接查看拓扑代码

(二)进阶要求

  1. 将抓包结果对照OpenFlow源码,了解OpenFlow主要消息类型对应的数据结构定义。

    • 所有信号类型:

      enum ofp_type {
          /* Immutable messages. */
          OFPT_HELLO,               /* Symmetric message */
          OFPT_ERROR,               /* Symmetric message */
          OFPT_ECHO_REQUEST,        /* Symmetric message */
          OFPT_ECHO_REPLY,          /* Symmetric message */
          OFPT_VENDOR,              /* Symmetric message */
      
          /* Switch configuration messages. */
          OFPT_FEATURES_REQUEST,    /* Controller/switch message */
          OFPT_FEATURES_REPLY,      /* Controller/switch message */
          OFPT_GET_CONFIG_REQUEST,  /* Controller/switch message */
          OFPT_GET_CONFIG_REPLY,    /* Controller/switch message */
          OFPT_SET_CONFIG,          /* Controller/switch message */
      
          /* Asynchronous messages. */
          OFPT_PACKET_IN,           /* Async message */
          OFPT_FLOW_REMOVED,        /* Async message */
          OFPT_PORT_STATUS,         /* Async message */
      
          /* Controller command messages. */
          OFPT_PACKET_OUT,          /* Controller/switch message */
          OFPT_FLOW_MOD,            /* Controller/switch message */
          OFPT_PORT_MOD,            /* Controller/switch message */
      
          /* Statistics messages. */
          OFPT_STATS_REQUEST,       /* Controller/switch message */
          OFPT_STATS_REPLY,         /* Controller/switch message */
      
          /* Barrier messages. */
          OFPT_BARRIER_REQUEST,     /* Controller/switch message */
          OFPT_BARRIER_REPLY,       /* Controller/switch message */
      
          /* Queue Configuration messages. */
          OFPT_QUEUE_GET_CONFIG_REQUEST,  /* Controller/switch message */
          OFPT_QUEUE_GET_CONFIG_REPLY     /* Controller/switch message */
      
      };
      
    • OPFT_HELLO

      /* Header on all OpenFlow packets. */
      struct ofp_header {
          uint8_t version;    /* OFP_VERSION. */
          uint8_t type;       /* One of the OFPT_ constants. */
          uint16_t length;    /* Length including this ofp_header. */
          uint32_t xid;       /* Transaction id associated with this packet.
                                 Replies use the same id as was in the request
                                 to facilitate pairing. */
      };
      /* OFPT_HELLO.  This message has an empty body, but implementations must
       * ignore any data included in the body, to allow for future extensions. */
      struct ofp_hello {
          struct ofp_header header;
      };
      

    • OFPT_FEATURES_REQUEST

      结构与HELLO相似

    • OFPT_SET_CONFIG

      /* Switch configuration. */
      struct ofp_switch_config {
          struct ofp_header header;
          uint16_t flags;             /* OFPC_* flags. */
          uint16_t miss_send_len;     /* Max bytes of new flow that datapath should
                                         send to the controller. */
      };
      

    • OFPT_PORT_STATUS

      /* A physical port has changed in the datapath */
      struct ofp_port_status {
          struct ofp_header header;
          uint8_t reason;          /* One of OFPPR_*. */
          uint8_t pad[7];          /* Align to 64-bits. */
          struct ofp_phy_port desc;
      };
      

    • OFPT_FEATURES_REPLY

      /* Description of a physical port */
      struct ofp_phy_port {
          uint16_t port_no;
          uint8_t hw_addr[OFP_ETH_ALEN];
          char name[OFP_MAX_PORT_NAME_LEN]; /* Null-terminated */
      
          uint32_t config;        /* Bitmap of OFPPC_* flags. */
          uint32_t state;         /* Bitmap of OFPPS_* flags. */
      
          /* Bitmaps of OFPPF_* that describe features.  All bits zeroed if
           * unsupported or unavailable. */
          uint32_t curr;          /* Current features. */
          uint32_t advertised;    /* Features being advertised by the port. */
          uint32_t supported;     /* Features supported by the port. */
          uint32_t peer;          /* Features advertised by peer. */
      };
      
      /* Switch features. */
      struct ofp_switch_features {
          struct ofp_header header;
          uint64_t datapath_id;   /* Datapath unique ID.  The lower 48-bits are for
                                     a MAC address, while the upper 16-bits are
                                     implementer-defined. */
      
          uint32_t n_buffers;     /* Max packets buffered at once. */
      
          uint8_t n_tables;       /* Number of tables supported by datapath. */
          uint8_t pad[3];         /* Align to 64-bits. */
      
          /* Features. */
          uint32_t capabilities;  /* Bitmap of support "ofp_capabilities". */
          uint32_t actions;       /* Bitmap of supported "ofp_action_type"s. */
      
          /* Port info.*/
          struct ofp_phy_port ports[0];  /* Port definitions.  The number of ports
                                            is inferred from the length field in
                                            the header. */
      };
      

    • OFPT_PACKET_IN

      struct ofp_packet_in {
          struct ofp_header header;
          uint32_t buffer_id;     /* ID assigned by datapath. */
          uint16_t total_len;     /* Full length of frame. */
          uint16_t in_port;       /* Port on which frame was received. */
          uint8_t reason;         /* Reason packet is being sent (one of OFPR_*) */
          uint8_t pad;
          uint8_t data[0];        /* Ethernet frame, halfway through 32-bit word,
                                     so the IP header is 32-bit aligned.  The
                                     amount of data is inferred from the length
                                     field in the header.  Because of padding,
                                     offsetof(struct ofp_packet_in, data) ==
                                     sizeof(struct ofp_packet_in) - 2. */
      };
      

    • OFPT_FLOW_MOD

      struct ofp_flow_mod {
          struct ofp_header header;
          struct ofp_match match;      /* Fields to match */
          uint64_t cookie;             /* Opaque controller-issued identifier. */
      
          /* Flow actions. */
          uint16_t command;             /* One of OFPFC_*. */
          uint16_t idle_timeout;        /* Idle time before discarding (seconds). */
          uint16_t hard_timeout;        /* Max time before discarding (seconds). */
          uint16_t priority;            /* Priority level of flow entry. */
          uint32_t buffer_id;           /* Buffered packet to apply to (or -1).
                                           Not meaningful for OFPFC_DELETE*. */
          uint16_t out_port;            /* For OFPFC_DELETE* commands, require
                                           matching entries to include this as an
                                           output port.  A value of OFPP_NONE
                                           indicates no restriction. */
          uint16_t flags;               /* One of OFPFF_*. */
          struct ofp_action_header actions[0]; /* The action length is inferred
                                                  from the length field in the
                                                  header. */
      };
      

    • OFPT_PACKET_OUT

      /* Send packet (controller -> datapath). */
      struct ofp_packet_out {
          struct ofp_header header;
          uint32_t buffer_id;           /* ID assigned by datapath (-1 if none). */
          uint16_t in_port;             /* Packet's input port (OFPP_NONE if none). */
          uint16_t actions_len;         /* Size of action array in bytes. */
          struct ofp_action_header actions[0]; /* Actions. */
          /* uint8_t data[0]; */        /* Packet data.  The length is inferred
                                           from the length field in the header.
                                           (Only meaningful if buffer_id == -1.) */
      };
      

四、心得

实验难度:

  • 本次实验以验证性实验为主,主要是了解并掌握OpenFlow通讯过程中,数据包的流动过程和对应的信息数据结构,对比前几次实验较为简单。

实验过程遇到的困难及解决办法:

  • 运行wireshark后,运行拓扑结构后,未在抓包列表中找到OFPT_FLOW_MOD类型,多次重复无果后,尝试输入pingall得到想要的结果

心得:

  • 本次实验难度较低,更重要的是对于OpenFlow协议的数据包交互过程与机制的了解与学习,面对较多的信息内容,实验过程中需要有耐心,一步一步地去完成。
  • 对于wireshark的使用更加熟练,也了解到了对应数据包内容的含义,对OpenFlow协议有了进一步的了解。
posted @ 2021-09-29 00:19  Jiangggg  阅读(241)  评论(0编辑  收藏  举报