多项式基础:FFT与NTT
本文为基础部分。
多项式进阶:多项式的高级运算
相似算法:快速沃尔什变换(FWT)
FFT与NTT用来处理多项式乘法。
快速傅里叶变换(FFT)
实质是加速“将单位根代入多项式得到点值表示”的非迭代分治做法。
DFT一遍以后数组第 \(i\) 位表示的是将 \(i\) 次单位根带入多项式的点值。
IDFT相当于将 \(-i\) 次单位根带入多项式的点值。根据单位根反演的相关知识,可以知道这样能够还原第 \(i\) 项的系数。
据此可以做:P4235 Hash?
还是详细来一遍吧:
DFT
设多项式:
我们要快速求出 \(F(x)\) 在 \(x = \omega_n^0, \omega_n^1,...,\omega_n^{n-1}\) 处的点值 集合 \(F'(x)\)。
有:
然后可以扔到两个子区间做子问题了,得到左边的 \(F^0(w_{n/2}^i)\) 以及右边的 \(w_n^iF^1(w_{n/2}^i)\) 以后就可以算出当前的 \(F(w_n^i)\) 了。
IDFT
我们断言 \(F'(w_n^{-k}) = na_k\)。
证明:
带入 \(w_n^{-k}\):
由单位根反演知:
因此:
因此,当取值充足的前提下,\(F(w_n^{-k})=na_k\);当实际项数超过 \(n\)(\(limi\))的时候,\(F(w_n^{-k})=n(a_k+a_{k+t}+...)\),即循环卷积。
2020.12.23 Update:
如果IDFT时我们硬是吧 \(w_n^k\) 代入的话会发生什么?
在不发生循环卷积的情况下,代入 \(w_n^0\) 会得到 \(na_0\),代入 \(w_n^i\) 会得到 \(na_{n-i}\)。于是除 \(n\) 后将 \(1...n-1\) 翻转一下即可。
\(Code\):
struct Complex {
double x, y;
Complex(double xx = 0, double yy = 0) {x = xx, y = yy;}
Complex operator + (const Complex &i) const {
return Complex(x + i.x, y + i.y);
}
Complex operator - (const Complex &i) const {
return Complex(x - i.x, y - i.y);
}
Complex operator * (const Complex &a) const {
return Complex(x * a.x - y * a.y, x * a.y + y * a.x);
}
}A[N], B[N];
int n, m, limi = 1, l;
int r[N];
const double Pi = 3.14159265358979323846264;
void fft(Complex *a, int type) {
for (register int i = 0; i < limi; ++i)
if (i < r[i]) swap(a[i], a[r[i]]);
for (register int j = 1; j < limi; j <<= 1) {//长度
Complex T(cos(Pi/j), type * sin(Pi / j));
for (register int k = 0; k < limi; k += (j << 1)) {//第几块
Complex t(1, 0);
for (register int p = 0; p < j; ++p, t = t * T) {//该块的第几个
Complex nx = a[k + p], ny = t * a[k + j + p];
a[k + p] = nx + ny;
a[k + j + p] = nx - ny;
}
}
}
}
int main() {
read(n); read(m);
int aa;
for (register int i = 0; i <= n; ++i) read(aa), A[i].x = aa;
for (register int i = 0; i <= m; ++i) read(aa), B[i].x = aa;
while (limi<=n + m) limi <<= 1, l++;
for (register int i = 0; i < limi; ++i)
r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
fft(A, 1); fft(B, 1);
for (register int i = 0; i <= limi; ++i) A[i] = A[i] * B[i];
fft(A, -1);
for(register int i = 0; i < limi; ++i)
A[i].x /= limi;//此处亦可 reverse(A + 1, A + limi)
for (register int i = 0; i <= n + m; ++i)
printf("%d ", (int)(A[i].x + 0.5));
return 0;
}
快速数论变换(NTT)
素数 | 原根 |
---|---|
998244353 | 3 |
3221225473(long long) | 5 |
395 824 185 999 37 (3e13) | 5 |
能够用原根代替单位根是因为原根具有类似单位根的性质:
-
也有“循环”的性质
-
不会
-
不知
-
...
记得取模!!
\(2020.7.28\) \(Update:\)更新了代码
\(Code:\)
const int P = 998244353;
const int G = 3;
const int Gi = (P + 1) / G;
inline void ntt(ll *a, int type) {
for (register int i = 1; i < limi; ++i)
if (i < r[i]) swap(a[i], a[r[i]]);
for (register int i = 1; i < limi; i <<= 1) {//i < limi
ll T = quickpow(type == 1 ? G : Gi, (P - 1) / (i << 1));//Attention!!
for (register int j = 0; j < limi; j += (i << 1)) {
ll t = 1;
for (register int k = 0; k < i; ++k, t = t * T % P) {//Attention!! : % P
ll nx = a[j + k], ny = a[j + k + i] * t % P;
a[j + k] = (nx + ny) % P;
a[j + k + i] = (nx - ny + P) % P;
}
}
}
if (type == -1) {
ll inv = quickpow(limi, P - 2);
for (register int i = 0; i < limi; ++i)
a[i] = a[i] * inv % P;
}
}
inline void mul(ll *a, ll *b, int n, int m) {//传入 a, b,导出到 a
while (limi <= (n + m)) limi <<= 1, ++L;
for (register int i = 1; i < limi; ++i)
r[i] = (r[i >> 1] >> 1) | ((i & 1) << (L - 1));
ntt(a, 1), ntt(b, 1);
for (register int i = 0; i < limi; ++i) a[i] = a[i] * b[i] % P;
ntt(a, -1);
}
- FFT与NTT(多项式乘法)的应用:
通过模拟乘法竖式,我们发现,高精乘其实就是在进行多项式乘法。这样的话我们可以用FFT或NTT来把它优化到nlogn。
\(Code:\)
#define P 998244353
#define G 3
#define Gi 332748118
char as[N], bs[N];
int n, m;
ll A[N], B[N], ans[N];
ll limi = 1, l, inv;
int r[N];
inline ll quickpow(ll x, ll k)...
inline void ntt(ll *a, int type) {
for (register int i = 0; i <= limi; ++i)
if (i < r[i]) swap(a[i], a[r[i]]);
for (register int i = 1; i < limi; i <<= 1) {
ll T = quickpow(type == 1 ? G : Gi, (P - 1) / (i << 1));
for (register int j = 0; j < limi; j += (i << 1)) {
ll t = 1;
for (register int p = 0; p < i; ++p, t = t * T % P) {
ll nx = a[j + p], ny = t * a[j + p + i] % P;
a[j + p] = (nx + ny) % P;
a[j + p + i] = (nx - ny + P) % P;
}
}
}
}
int main() {
scanf("%s%s", as, bs);
n = strlen(as) - 1;
m = strlen(bs) - 1;
ll ct = 0;
for (register int i = n; i >= 0; --i) A[ct++] = as[i] - '0';
ct = 0;
for (register int i = m; i >= 0; --i) B[ct++] = bs[i] - '0';
while (limi <= n + m) limi <<= 1, l++;
for (register int i = 1; i <= limi; ++i)
r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
ntt(A, 1); ntt(B, 1);
for (register int i = 0; i <= limi; ++i) A[i] = A[i] * B[i] % P;
ntt(A, -1);
inv = quickpow(limi, P - 2);
for (register int i = 0; i <= limi; ++i)
ans[i] = A[i] * inv % P;
limi += 5;
for (register int i = 0; i <= limi; ++i)
if (ans[i] >= 10) {
ans[i + 1] += ans[i] / 10;
ans[i] %= 10;
}
ll len = 1;
for (register int i = limi; i >= 0; --i)
if (ans[i]) break;
else len = i - 1;
for (register int i = len; i >= 0; --i) {
printf("%lld", ans[i]);
}
return 0;
}
卡常技巧
预处理单位根:
理论上是有空间 \(O(n)\) 的做法的,大概是二倍(乘四倍)空间,但是下面的写法更好写。
ll yuangen[18][N];
inline void ntt(ll *a, int limi, int type) {
for (int i = 0; i < limi; ++i)
if (i < r[i]) swap(a[i], a[r[i]]);
for (int i = 1, ji = 0; i < limi; i <<= 1, ++ji) {
ll* G = yuangen[ji];
for (int j = 0; j < limi; j += (i << 1)) {
for (int k = 0; k < i; ++k) {
ll nx = a[j + k], ny = a[i + j + k] * G[k] % P;
a[j + k] = (nx + ny) % P;
a[j + k + i] = (nx - ny + P) % P;
}
}
}
if (type == -1) {
ll inv = quickpow(limi, P - 2);
for (int i = 0; i < limi; ++i) a[i] = a[i] * inv % P;
reverse(a + 1, a + limi);
}
}
...
for (int ji = 0, i = 1; ji < 18; i <<= 1, ++ji) {
ll* G = yuangen[ji];
G[0] = 1;
G[1] = quickpow(3, (P + 1) / (i << 1));
for (int j = 2; j < i; ++j) G[j] = G[j - 1] * G[1] % P;
}
例题
通过数学推导,我们发现,要解决其中的旋转求最大的aibi的和的问题时,我们可以把它转化成求卷积(多项式乘法)后的后n项的最值问题,这里用NTT优化。但其实这道题主要还是难在数学推导的想法以及如何想到卷积。
\(Code:\)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#define N 300010
#define P 998244353
#define G 3
#define Gi 332748118
#define inf 992337203685477580ll
typedef long long ll;
template<typename T> inline void read(T &x) {
x = 0; char c = getchar(); bool flag = false;
while (!isdigit(c)) {if (c == '-') flag = true; c = getchar(); }
while (isdigit(c)) {x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); }
if (flag) x = -x;
}
using namespace std;
ll n, m, limi = 1, l;
ll x[N], y[N], r[N];
ll ans, sum, toans = inf;
inline ll quickpow(ll x, ll k) {
ll res = 1;
while (k) {
if (k & 1) res = res * x % P;
x = x * x % P;
k >>= 1;
}
return res;
}
inline void ntt(ll *a, int type) {
for (register int i = 0; i <= limi; ++i)
if (i < r[i]) swap(a[i], a[r[i]]);
for (register int i = 1; i < limi; i <<= 1) {
ll T = quickpow(type == 1 ? G : Gi, (P - 1) / (i << 1));
for (register int j = 0; j < limi; j += (i << 1)) {
ll t = 1;
for (register int p = 0; p < i; ++p, t = t * T % P) {
ll nx = a[j + p], ny = t * a[j + p + i] % P;
a[j + p] = (nx + ny) % P;
a[j + p + i] = (nx - ny + P) % P;
}
}
}
if (type == -1) {
ll inv = quickpow(limi, P - 2);
for (register int i = 0; i <= limi; ++i)
a[i] = a[i] * inv % P;
}
}
int main() {
read(n); read(m);
for (register int i = 1; i <= n; ++i) read(x[i]), x[i + n] = x[i];
for (register int i = 1; i <= n; ++i) read(y[i]);
for (register int i = 1; i <= n; ++i) {
ans += x[i] * x[i] + y[i] * y[i];
sum += x[i] - y[i];
}
sum *= 2;
for (register int i = -m; i <= m; ++i) {
toans = min(toans, 1ll * n * i * i + sum * i);
}
ans += toans;
reverse(y + 1, y + n + 1);
while (limi <= 2 * n) limi <<= 1, l++;
for (register int i = 0; i < limi; ++i)
r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
ntt(x, 1); ntt(y, 1);
for (register int i = 0; i < limi; ++i) x[i] = x[i] * y[i] % P;
ntt(x, -1);
sum = 0;
for (register int i = n + 1; i <= (n << 1); ++i) sum = max(sum, x[i]);
ans -= 2 * sum;
printf("%lld\n", ans);
return 0;
}
- 注意:
-
记得取模!+1
-
左移和右移一定分清!!
-
关于i = 0还是i = 1:
FFT和NTT里都是i = 0,别写成i = 1。
- 关于<= limi还是< limi:
写<= limi总不会错的。
统计答案的时候不要写<= limi!!!
第一层循环也不要写 <= limi,写 < limi
-
到了后面(多项式乘法时)n和m的出现次数就少了,主要是limi。
-
cosnt int Gi = (M + 1) / G;以后就这么写吧,省着把332748118 写成 322748118
-
NTT和FFT的第三层循环中的p应写成(int p = 0; p < i; ++p, t = t × T % P)。 +1
-
记住,是ax = a[j + p], ay = t × a[i + j + p]!!!别忘了乘t!!
-
NTT和FFT的第一层循环应写成(int i = 1; i < limi; i <<= 1)。
-
FFT中T为Complex(cos(PI / i), sin(PI / i) * type),横坐标是cos,纵坐标是sin!!
-
一开始蝴蝶变换的时候是
swap(a[i], a[r[i]])
,不是swap(i, r[i])
!! +1 -
ntt/fft 最终的除法操作是
type == -1
的时候做的!!!不是type == 1
!!!(真想不到还能这样出错)
习题
实际上这道题应该是例题的基础,是纯的FFT。
NTT配合manacher来做。细节不少,有一定难度。