多项式基础:FFT与NTT

本文为基础部分。

多项式进阶:多项式的高级运算

相似算法:快速沃尔什变换(FWT)

FFT与NTT用来处理多项式乘法。

快速傅里叶变换(FFT)

小学生都能看懂的FFT!!!

实质是加速“将单位根代入多项式得到点值表示”的非迭代分治做法。

DFT一遍以后数组第 \(i\) 位表示的是将 \(i\) 次单位根带入多项式的点值。

IDFT相当于将 \(-i\) 次单位根带入多项式的点值。根据单位根反演的相关知识,可以知道这样能够还原第 \(i\) 项的系数。

据此可以做:P4235 Hash?

还是详细来一遍吧:

DFT

设多项式:

\[F(x) = \sum_{i=0}^{n-1}a_ix^i \]

我们要快速求出 \(F(x)\)\(x = \omega_n^0, \omega_n^1,...,\omega_n^{n-1}\) 处的点值 集合 \(F'(x)\)

有:

\[F'(i) = F(w_n^i) = a_0 + a_1w_n^i + a_2w_n^{2i}...a_{n-1}w_n^{(n-1)i} \]

\[=(a_0 + a_2w_n^{2i}...) + w_n^i(a_1 + a_3w_n^{2i}...) \]

\[= F^0(w_n^{2i}) + w_n^iF^1(w_n^{2i}) \]

\[=F^0(w_{n/2}^i) + w_n^iF^1(w_{n/2}^i) \]

然后可以扔到两个子区间做子问题了,得到左边的 \(F^0(w_{n/2}^i)\) 以及右边的 \(w_n^iF^1(w_{n/2}^i)\) 以后就可以算出当前的 \(F(w_n^i)\) 了。

IDFT

我们断言 \(F'(w_n^{-k}) = na_k\)

证明:

\[F'(x)=\sum_{i=0}^{n-1}a'_ix^i \]

\[=\sum_{i=0}^{n-1}(\sum_{j=0}^{n-1}a_jw_n^{ij})x^i \]

\[=\sum_{j=0}^{n-1}a_j\sum_{i=0}^{n-1}w_n^{ij}x^i \]

带入 \(w_n^{-k}\)

\[F(w_n^{-k})=\sum_{j=0}^{n-1}a_j\sum_{i=0}^{n-1}w_n^{ij}w_n^{-ik} \]

\[=\sum_{j=0}^{n-1}a_j\sum_{i=0}^{n-1}w_n^{i(j-k)} \]

由单位根反演知:

\[\sum_{i=0}^{n-1}w_n^{ix}=n[n|x] \]

因此:

\[F(w_n^{-k})=n\sum_{j=0}^{n-1}a_j[n|(j-k)] \]

\[=n\sum_{t=0}^{\infty}a_{tn+k} \]

因此,当取值充足的前提下,\(F(w_n^{-k})=na_k\);当实际项数超过 \(n\)\(limi\))的时候,\(F(w_n^{-k})=n(a_k+a_{k+t}+...)\),即循环卷积

循环卷积题

2020.12.23 Update:

如果IDFT时我们硬是吧 \(w_n^k\) 代入的话会发生什么?

\[\begin{aligned} F'(w_n^k) &= \sum_{i=0}^{n-1} \sum_{j=0}^{n-1}a_jw_n^{ij}w_n^{ik}m\\ &= \sum_{j=0}^{n-1} a_j \sum_{i=0}^{n-1} w_n^{i(k+j)}\\ &= \sum_{j=0}^{n-1} a_jn[n|(k+j)] \end{aligned} \]

在不发生循环卷积的情况下,代入 \(w_n^0\) 会得到 \(na_0\),代入 \(w_n^i\) 会得到 \(na_{n-i}\)。于是除 \(n\) 后将 \(1...n-1\) 翻转一下即可。

\(Code\):

struct Complex {
	double x, y;
	Complex(double xx = 0, double yy = 0) {x = xx, y = yy;}
	Complex operator + (const Complex &i) const {
		return Complex(x + i.x, y + i.y);
	}
	Complex operator - (const Complex &i) const {
		return Complex(x - i.x, y - i.y);
	}
	Complex operator * (const Complex &a) const {
		return Complex(x * a.x - y * a.y, x * a.y + y * a.x);
	}
}A[N], B[N];
int n, m, limi = 1, l;
int r[N];
const double Pi = 3.14159265358979323846264;
void fft(Complex *a, int type) {
	for (register int i = 0; i < limi; ++i)
		if (i < r[i])	swap(a[i], a[r[i]]);
	for (register int j = 1; j < limi; j <<= 1) {//长度 
		Complex T(cos(Pi/j), type * sin(Pi / j));
		for (register int k = 0; k < limi; k += (j << 1)) {//第几块 
			Complex t(1, 0);
			for (register int p = 0; p < j; ++p, t = t * T) {//该块的第几个 
				Complex nx = a[k + p], ny = t * a[k + j + p];
				a[k + p] = nx + ny;
				a[k + j + p] = nx - ny;
			}
		}
	}
}

int main() {
	read(n); read(m);
	int aa;
	for (register int i = 0; i <= n; ++i)	read(aa), A[i].x = aa;
	for (register int i = 0; i <= m; ++i)	read(aa), B[i].x = aa;
	while (limi<=n + m)	limi <<= 1, l++;
	for (register int i = 0; i < limi; ++i)
		r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
	fft(A, 1); fft(B, 1);
	for (register int i = 0; i <= limi; ++i)	A[i] = A[i] * B[i];
	fft(A, -1);
    for(register int i = 0; i < limi; ++i)
    	A[i].x /= limi;//此处亦可 reverse(A + 1, A + limi)
	for (register int i = 0; i <= n + m; ++i)
		printf("%d ", (int)(A[i].x + 0.5));
	return 0;
}

快速数论变换(NTT)

快速数论变换(NTT)小结

NTT(快速数论变换)用到的各种素数及原根

素数 原根
998244353 3
3221225473(long long) 5
395 824 185 999 37 (3e13) 5

能够用原根代替单位根是因为原根具有类似单位根的性质:

  1. 也有“循环”的性质

  2. 不会

  3. 不知

  4. ...

记得取模!!

\(2020.7.28\) \(Update:\)更新了代码

\(Code:\)

const int P = 998244353;
const int G = 3;
const int Gi = (P + 1) / G;
inline void ntt(ll *a, int type) {
	for (register int i = 1; i < limi; ++i)
		if (i < r[i])	swap(a[i], a[r[i]]);
	for (register int i = 1; i < limi; i <<= 1) {//i < limi
		ll T = quickpow(type == 1 ? G : Gi, (P - 1) / (i << 1));//Attention!!
		for (register int j = 0; j < limi; j += (i << 1)) {
			ll t = 1;
			for (register int k = 0; k < i; ++k, t = t * T % P) {//Attention!! : % P
				ll nx = a[j + k], ny = a[j + k + i] * t % P;
				a[j + k] = (nx + ny) % P;
				a[j + k + i] = (nx - ny + P) % P;
			}
		}
	}
	if (type == -1) {
		ll inv = quickpow(limi, P - 2);
		for (register int i = 0; i < limi; ++i)
			a[i] = a[i] * inv % P;
	}
}
inline void mul(ll *a, ll *b, int n, int m) {//传入 a, b,导出到 a
	while (limi <= (n + m))	limi <<= 1, ++L;
	for (register int i = 1; i < limi; ++i)
		r[i] = (r[i >> 1] >> 1) | ((i & 1) << (L - 1));
	ntt(a, 1), ntt(b, 1);
	for (register int i = 0; i < limi; ++i)	a[i] = a[i] * b[i] % P;
	ntt(a, -1);
}
  • FFT与NTT(多项式乘法)的应用:

【模板】A*B Problem升级版(FFT快速傅里叶)

通过模拟乘法竖式,我们发现,高精乘其实就是在进行多项式乘法。这样的话我们可以用FFT或NTT来把它优化到nlogn。

\(Code:\)

#define P 998244353
#define G 3
#define Gi 332748118
char as[N], bs[N];
int n, m;
ll A[N], B[N], ans[N];
ll limi = 1, l, inv;
int r[N];
inline ll quickpow(ll x, ll k)...
inline void ntt(ll *a, int type) {
	for (register int i = 0; i <= limi; ++i) 
		if (i < r[i])	swap(a[i], a[r[i]]);
	for (register int i = 1; i < limi; i <<= 1) {
		ll T = quickpow(type == 1 ? G : Gi, (P - 1) / (i << 1));
		for (register int j = 0; j < limi; j += (i << 1)) {
			ll t = 1;
			for (register int p = 0; p < i; ++p, t = t * T % P) {
				ll nx = a[j + p], ny = t * a[j + p + i] % P;
				a[j + p] = (nx + ny) % P;
				a[j + p + i] = (nx - ny + P) % P;
			}
		}
	}
}
int main() {
	scanf("%s%s", as, bs);
	n = strlen(as) - 1;
	m = strlen(bs) - 1;
	ll ct = 0;
	for (register int i = n; i >= 0; --i) A[ct++] = as[i] - '0';
	ct = 0;
	for (register int i = m; i >= 0; --i)	B[ct++] = bs[i] - '0';
	while (limi <= n + m)	limi <<= 1, l++;
	for (register int i = 1; i <= limi; ++i) 
		r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
	ntt(A, 1); ntt(B, 1);
	for (register int i = 0; i <= limi; ++i)	A[i] = A[i] * B[i] % P;
	ntt(A, -1);
	inv = quickpow(limi, P - 2);
	for (register int i = 0; i <= limi; ++i)
		ans[i] = A[i] * inv % P;
	limi += 5;
	for (register int i = 0; i <= limi; ++i)
		if (ans[i] >= 10) {
			ans[i + 1] += ans[i] / 10;
			ans[i] %= 10;
		}
	ll len = 1;
	for (register int i = limi; i >= 0; --i)
		if (ans[i]) break;
		else	len = i - 1;
	for (register int i = len; i >= 0; --i) {
		printf("%lld", ans[i]);
	}
	return 0;
}

卡常技巧

预处理单位根:

理论上是有空间 \(O(n)\) 的做法的,大概是二倍(乘四倍)空间,但是下面的写法更好写。

ll yuangen[18][N];
inline void ntt(ll *a, int limi, int type) {
	for (int i = 0; i < limi; ++i)
		if (i < r[i])	swap(a[i], a[r[i]]);
	for (int i = 1, ji = 0; i < limi; i <<= 1, ++ji) {
		ll* G = yuangen[ji];
		for (int j = 0; j < limi; j += (i << 1)) {
			for (int k = 0; k < i; ++k) {
				ll nx = a[j + k], ny = a[i + j + k] * G[k] % P;
				a[j + k] = (nx + ny) % P;
				a[j + k + i] = (nx - ny + P) % P;
			}
		}
	}
	if (type == -1) {
		ll inv = quickpow(limi, P - 2);
		for (int i = 0; i < limi; ++i)	a[i] = a[i] * inv % P;
		reverse(a + 1, a + limi);
	}
}
...
for (int ji = 0, i = 1; ji < 18; i <<= 1, ++ji) {
	ll* G = yuangen[ji];
	G[0] = 1;
	G[1] = quickpow(3, (P + 1) / (i << 1));
	for (int j = 2; j < i; ++j)	G[j] = G[j - 1] * G[1] % P;
}

例题

通过数学推导,我们发现,要解决其中的旋转求最大的aibi的和的问题时,我们可以把它转化成求卷积(多项式乘法)后的后n项的最值问题,这里用NTT优化。但其实这道题主要还是难在数学推导的想法以及如何想到卷积。

\(Code:\)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#define N 300010
#define P 998244353
#define G 3
#define Gi 332748118
#define inf 992337203685477580ll
typedef long long ll;
template<typename T> inline void read(T &x) {
	x = 0; char c = getchar(); bool flag = false;
	while (!isdigit(c)) {if (c == '-') flag = true; c = getchar(); }
	while (isdigit(c)) {x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); }
	if (flag)	x = -x;
}
using namespace std;
ll n, m, limi = 1, l; 
ll x[N], y[N], r[N];
ll ans, sum, toans = inf;
inline ll quickpow(ll x, ll k) {
	ll res = 1;
	while (k) {
		if (k & 1)	res = res * x % P;
		x = x * x % P;
		k >>= 1;
	}
	return res;
}
inline void ntt(ll *a, int type) {
	for (register int i = 0; i <= limi; ++i)
		if (i < r[i])	swap(a[i], a[r[i]]);
	for (register int i = 1; i < limi; i <<= 1) {
		ll T = quickpow(type == 1 ? G : Gi, (P - 1) / (i << 1));
		for (register int j = 0; j < limi; j += (i << 1)) {
			ll t = 1;
			for (register int p = 0; p < i; ++p, t = t * T % P) {
				ll nx = a[j + p], ny = t * a[j + p + i] % P;
				a[j + p] = (nx + ny) % P;
				a[j + p + i] = (nx - ny + P) % P;
			}
		}
	}
	if (type == -1) {
		ll inv = quickpow(limi, P - 2);
		for (register int i = 0; i <= limi; ++i)
			a[i] = a[i] * inv % P;
	}
}
int main() {
	read(n); read(m);
	for (register int i = 1; i <= n; ++i) read(x[i]), x[i + n] = x[i];
	for (register int i = 1; i <= n; ++i)	read(y[i]);
	for (register int i = 1; i <= n; ++i) {
		ans += x[i] * x[i] + y[i] * y[i];
		sum += x[i] - y[i];
	}
	sum *= 2;
	for (register int i = -m; i <= m; ++i) {
		toans = min(toans, 1ll * n * i * i + sum * i);
	}
	ans += toans;
	
	reverse(y + 1, y + n + 1);
	while (limi <= 2 * n)	limi <<= 1, l++;
	for (register int i = 0; i < limi; ++i)
		r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
	ntt(x, 1); ntt(y, 1);
	for (register int i = 0; i < limi; ++i)	x[i] = x[i] * y[i] % P;
	ntt(x, -1);
	sum = 0;
	for (register int i = n + 1; i <= (n << 1); ++i)	sum = max(sum, x[i]);
	ans -= 2 * sum;
	printf("%lld\n", ans);
	return 0;
}

  • 注意:
  1. 记得取模!+1

  2. 左移和右移一定分清!!

  3. 关于i = 0还是i = 1:

FFT和NTT里都是i = 0,别写成i = 1。

  1. 关于<= limi还是< limi:

写<= limi总不会错的。

统计答案的时候不要写<= limi!!!

第一层循环也不要写 <= limi,写 < limi

  1. 到了后面(多项式乘法时)n和m的出现次数就少了,主要是limi。

  2. cosnt int Gi = (M + 1) / G;以后就这么写吧,省着把332748118 写成 322748118

  3. NTT和FFT的第三层循环中的p应写成(int p = 0; p < i; ++p, t = t × T % P)。 +1

  4. 记住,是ax = a[j + p], ay = t × a[i + j + p]!!!别忘了乘t!!

  5. NTT和FFT的第一层循环应写成(int i = 1; i < limi; i <<= 1)。

  6. FFT中T为Complex(cos(PI / i), sin(PI / i) * type),横坐标是cos,纵坐标是sin!!

  7. 一开始蝴蝶变换的时候是swap(a[i], a[r[i]]),不是swap(i, r[i])!! +1

  8. ntt/fft 最终的除法操作是 type == -1 的时候做的!!!不是 type == 1!!!(真想不到还能这样出错)

习题

实际上这道题应该是例题的基础,是纯的FFT。

NTT配合manacher来做。细节不少,有一定难度。

posted @ 2020-07-28 17:18  JiaZP  阅读(308)  评论(0编辑  收藏  举报