机器学习笔记之矩阵分解 SVD奇异值分解
0x00 什么是SVD
奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分解,在生物信息学、信号处理、金融学、统计学等领域有重要应用,SVD都是提取信息的强度工具。
在机器学习领域,很多应用与奇异值都有关系,比如推荐系统、数据压缩(以图像压缩为代表)、搜索引擎语义层次检索的LSI等等。
0x01 SVD的原理
1.1 矩阵相关知识
正交与正定矩阵
- 正交矩阵:若一个方阵其行与列皆为正交的单位向量,则该矩阵为正交矩阵,且该矩阵的转置和其逆相等。两个向量正交的意思是两个向量的内积为 0。
- 正定矩阵:如果对于所有的非零实系数向量 z,都有 zTAz>0,则称矩阵A是正定的。正定矩阵的行列式必然大于0,所有特征值也必然>0。相对应的,半正定矩阵的行列式必然 ≥ 0。
转置与共轭转置
矩阵的转置(transpose)是最简单的一种矩阵变换。
简单来说,若m×n的矩阵M的转置记为MT;则MT是一个n×m的矩阵,并且Mi,j=MTj,i。因此,矩阵的转置相当于将矩阵按照主对角线翻转;同时,我们不难得出M=(MT)T。
矩阵的共轭转置(conjugate transpose)可能是倒数第二简单的矩阵变换。共轭转置只需要在转置的基础上,再叠加复数的共轭即可。因此,若以MH记矩阵M的共轭转置,则有
酉矩阵
酉矩阵(unitary matrix)是一种特殊的方阵,它满足UUH=UHU=In。不难看出,酉矩阵实际上是推广的正交矩阵(orthogonal matrix);当酉矩阵中的元素均为实数时,酉矩阵实际就是正交矩阵。另一方面,由于MM−1=M−1M=In,所以酉矩阵 U 满足U−1=UH,事实上,这是一个矩阵是酉矩阵的充分必要条件。
正规矩阵
同酉矩阵一样,正规矩阵(normal matrix)也是一种特殊的方阵,它要求在矩阵乘法的意义下与它的共轭转置矩阵满足交换律。这也就是说,若矩阵 M 满足如下条件,则称其为正规矩阵:MMH=MHM。显而易见,复系数的酉矩阵和实系数的正交矩阵都是正规矩阵。显而易见,正规矩阵并不只有酉矩阵或正交矩阵。例如说,矩阵
即是一个正规矩阵,但它显然不是酉矩阵或正交矩阵;因为
谱定理和谱分解
矩阵的对角化是线性代数中的一个重要命题。谱定理(spectral theorem)给出了方阵对角化的一个结论:若矩阵 M 是一个正规矩阵,则存在酉矩阵 U,以及对角矩阵Λ,使得M=UΛUH。这也就是说,正规矩阵,可经由酉变换,分解为对角矩阵;这种矩阵分解的方式,称为谱分解(spectral decomposition)。
1.2 SVD奇异值分解
谱定理给出了正规矩阵分解的可能性以及分解形式。然而,对于矩阵来说,正规矩阵是要求非常高的。因此,谱定理是一个非常弱的定理,它的适用范围有限。在实际生产中,我们遇到的很多矩阵都不是正规矩阵。对于这些矩阵,谱定理就失效了。作为谱定理的泛化,SVD 分解对于原矩阵的要求就要弱得多。
假设M是一个m×n的矩阵,其中的元素全部属于数域K(实数域R或复数域C)。那么,存在m×m的酉矩阵U和n×n的酉矩阵V使得:
1.3 SVD 的计算方法
0x02 SVD的应用实战
本次实战内容为基于模型的协同过滤算法。假设我们用m个用户,n个商品,每个用户对每个商品的评分可以组成一个m*n的二维矩阵。当然,这个矩阵中会有非常多的值是不知道的,可能是用户没有用过这个商品,也有可能用户使用后没有进行评分。如下图所示:
图中空白位置即未知的值。接下来,我们需要做的是根据这个残缺的二维矩阵中已知的值,预测出未知的值,即预测出每一个用户对每一个商品的评分。可以想象,当矩阵被预测值补充完整之后,矩阵的每一行即表示一个用户对所有商品的评分,可以从这些评分中提取评分最高的几个商品推荐给用户,这样我们就完成了一个推荐系统模型。接下来,就是如何通过已知值预测未知值的问题了,这里我们采用矩阵分解的方式,如图所示:
中间矩阵可以拆分为左边和上边两个矩阵的乘积,这就是奇异值分解,一个矩阵总是可以拆分成两个矩阵相乘。
第一步:安装Python组件及准备数据
1、安装Python推荐系统库:Surprise(Simple Python Recommendation System Engine)
pip install scikit-surprise
2、准备训练数据
用到的数据集movieslen 100k:https://grouplens.org/datasets/movielens/
Surprise自带数据集就支持movieslen,运行如下代码:
from surprise import Dataset # 加载movielens数据 data = Dataset.load_builtin('ml-100k')
交互窗口提示如下内容:
Dataset ml-100k could not be found. Do you want to download it? [Y/n]
输入Y以后会自动将数据集下载下来并可直接使用。
第二步:使用SVD进行模型训练
from surprise import SVD from surprise import Dataset from surprise.model_selection import cross_validate, train_test_split from surprise import accuracy data = Dataset.load_builtin('ml-100k') # 拆分训练集与测试集,75%的样本作为训练集,25%的样本作为测试集 # 这里的train_set的类型是surprise.dataset.Trainset类型,我们可以查看数据的基本信息 # train_set.n_users # Out[2]: 943 # train_set.n_items # Out[3]: 1637 # 这说明我们要用于训练的样本共有943个用户,1637个商品。 train_set, test_set = train_test_split(data, test_size=.25) # 训练模型,指定有35个隐含特征,使用训练集进行训练 # 35隐含特征是指,原本943*1637的矩阵会被拆分成943*35和35*1637的两个矩阵乘积。 # n_factors值可以任意指定只要不超过943即可,但是设置不同的值将会拟合出不同的模型,需要选择使结果较优的值。 # n_factors我一般选择ceiling(m*n,1/4)用来测试 model = SVD(n_factors=35) # 5折验证,输出结果 # 输出的内容为: # Evaluating RMSE, MAE of algorithm SVD on 5 split(s). # Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std # RMSE (testset) 0.9310 0.9320 0.9364 0.9329 0.9402 0.9345 0.0034 # MAE (testset) 0.7327 0.7357 0.7387 0.7357 0.7375 0.7361 0.0020 # Fit time 4.93 4.36 4.27 4.14 4.30 4.40 0.27 # Test time 0.24 0.31 0.30 0.20 0.19 0.25 0.05 cross_validate(model, data, measures=['RMSE', 'MAE'], cv=5, verbose=True) # 使用训练集进行训练 model.fit(train_set) # 模型训练完成后也可以查看拆分出来的两个矩阵 # model.pu.shape # Out[2]: (943, 35) # model.qi.shape # Out[3]: (1637, 35) # 使用测试集进行测试 # 输出的内容为:RMSE: 0.9413 predictions = model.test(test_set) accuracy.rmse(predictions)
第三步:根据模型结果进行推荐
uid = str(196) # raw user id (as in the ratings file). They are **strings**! iid = str(302) # raw item id (as in the ratings file). They are **strings**! # 获取指定用户和电影的评级结果. # 输出内容: # user: 196 item: 302 r_ui = 4.00 est = 4.05 {'was_impossible': False} pred = model.predict(uid, iid, r_ui=4, verbose=True)
0x03 SVD的缺点
SVD分解是早期推荐系统研究常用的矩阵分解方法,不过该方法具有以下缺点,因此很难在实际系统中应用。
- 该方法首要需要用一个简单的方法补全稀松评分矩阵。一般来说,推荐系统中的评分矩阵是非常稀疏的,一般都有95%以上的元素是缺失的。而一旦补全,评分矩阵就会变成一个稠密矩阵,从而使评分矩阵的存储需要非常大的空间,这种空间的需求在实际系统中是不可能接受的。
- 该方法依赖的SVD分解方法的计算复杂度较高,特别是在稠密的大规模矩阵上更是非常慢。一般来说,这里的SVD分解用于1000维以上的矩阵就已经非常慢了,而实际系统动辄上千万的用户和几百万的物品,所以这一方法无法使用。如果仔细研究这方面的论文可以发现,实验都是在几百个用户、几百个商品的数据集上进行的。
如何解决SVD存在的问题,请听下回分解。
0x04 参考链接
- 基于SVD协同过滤算法实现的电影推荐系统
- 奇异值分解(SVD)原理与在降维中的应用
- We Recommend a Singular Value Decomposition
- 谈谈矩阵的 SVD 分解
- https://github.com/PirosB3/PyConUS2018
0x05 转载
https://www.biaodianfu.com/svd.html#SVD%E7%9A%84%E7%BC%BA%E7%82%B9