机器学习笔记之逻辑回归(Logistic Regression)

0x00 什么是逻辑回归

许多人对线性回归都比较熟悉,但知道逻辑回归的人可能就要少的多。从大的类别上来说,逻辑回归是一种有监督的统计学习方法,主要用于对样本进行分类。

在线性回归模型中,输出一般是连续的,例如

 

 

 对于每一个输入的x,都有一个对应的y输出。模型的定义域和值域都可以是[-∞, +∞]。但是对于逻辑回归,输入可以是连续的[-∞, +∞],但输出一般是离散的,即只有有限多个输出值。例如,其值域可以只有两个值{0, 1},这两个值可以表示对样本的某种分类,高/低、患病/健康、阴性/阳性等,这就是最常见的二分类逻辑回归。因此,从整体上来说,通过逻辑回归模型,我们将在整个实数范围上的x映射到了有限个点上,这样就实现了对x的分类。因为每次拿过来一个x,经过逻辑回归分析,就可以将它归入某一类y中。

 

0x01 逻辑回归与线性回归的关系

逻辑回归也被称为广义线性回归模型,它与线性回归模型的形式基本上相同,都具有 ax+b,其中a和b是待求参数,其区别在于他们的因变量不同,多重线性回归直接将ax+b作为因变量,即y = ax+b,而logistic回归则通过函数S将ax+b对应到一个隐状态p,p = S(ax+b),然后根据p与1-p的大小决定因变量的值。这里的函数S就是Sigmoid函数

 

 

 将t换成ax+b,可以得到逻辑回归模型的参数形式:

 

 

 

 

 

 图1:sigmoid函数的图像

通过函数S的作用,我们可以将输出的值限制在区间[0, 1]上,p(x)则可以用来表示概率p(y=1|x),即当一个x发生时,y被分到1那一组的概率。可是,等等,我们上面说y只有两种取值,但是这里却出现了一个区间[0, 1],这是什么鬼??其实在真实情况下,我们最终得到的y的值是在[0, 1]这个区间上的一个数,然后我们可以选择一个阈值,通常是0.5,当y>0.5时,就将这个x归到1这一类,如果y<0.5就将x归到0这一类。但是阈值是可以调整的,比如说一个比较保守的人,可能将阈值设为0.9,也就是说有超过90%的把握,才相信这个x属于1这一类。了解一个算法,最好的办法就是自己从头实现一次。下面是逻辑回归的具体实现。

 

0x02 逻辑回归模型的代价函数

逻辑回归一般使用交叉熵作为代价函数。关于代价函数的具体细节,请参考代价函数,这里只给出交叉熵公式

 

0x03 数据准备

 下面的数据来自《机器学习实战》中的示例:

-0.017612    14.053064    0
-1.395634    4.662541    1
-0.752157    6.538620    0
-1.322371    7.152853    0
0.423363    11.054677    0
0.406704    7.067335    1
0.667394    12.741452    0
-2.460150    6.866805    1
0.569411    9.548755    0
-0.026632    10.427743    0

上面的数据一共是3列10行,其中前两列为x1和x2的值,第3列表示y的值;10行表示取了10个样本点。我们可以将这些数据当做训练模型参数的训练样本。

见到训练样本就可以比较直观的理解算法的输入,以及我们如何利用这些数据来训练逻辑回归分类器,进而用训练好的模型来预测新的样本(检测样本)。

从逻辑回归的参数形式,式子(1)我们可以看到逻辑回归模型中有两个待定参数a(x的系数)和b(常数项),我们现在给出来的数据有两个特征x1, x2,因此整个模型就增加了一项:ax1 + cx2 + b。为了形式上的统一,我们使用带下标的a表示不同的参数(a0表示常数项b并作x0的参数<x0=1>,a1、a2分别表示x1和x2的参数),就可以得到:

 

这样统一起来后,就可以使用矩阵表示了(比起前面展开的线性表示方式,用矩阵表示模型和参数更加简便,而且矩阵运算的速度也更快):

 

将上面的式子带入到(1)式,我们就可以得到逻辑回归的另一种表示形式了:

 

 

此时,可以很清楚的看到,我们后面的行动都是为了确定一个合适的a(一个参数向量),使得对于一个新来的X(也是一个向量),我们可以尽可能准确的给出一个y值,0或者1.

注:数据是二维的,也就是说这组观察样本中有两个自变量,即两个特征(feature)。

 

0x04 训练分类器

就像上面说的,训练分类器的过程,就是根据已经知道的数据(训练样本)确定一个使得代价函数的值最小的a(参数向量/回归系数)的过程。逻辑回归模型属于有监督的学习方法,上面示例数据中的第3列其实是训练样本提供的"标准答案"。也就是说,这些数据是已经分好类的(两类,0或者1)。在训练阶段,我们要做的就是利用训练样本和(2)式中的模型,估计一个比较合适的参数a,使得仅通过前面两列数据(观察值/测量值)就可以估计一个值h(a),这个值越接近标准答案y,说明我们的模型预测的越准确。

下面是估计回归系数a的值的过程,还是借鉴了《机器学习实战》中的代码,做了少量修改:

其中计算参数梯度,即代价函数对每个参数的偏导数(下面代码中的第36-38行),的详细推导过程可以参考这里

'''
Created on Oct 27, 2010
Logistic Regression Working Module
@author: Peter
'''
from numpy import *
import os

path = 'D:\MechineLearning\MLiA_SourceCode\machinelearninginaction\Ch05'
training_sample = 'trainingSample.txt'
testing_sample = 'testingSample.txt'

# 从文件中读入训练样本的数据,同上面给出的示例数据
# 下面第20行代码中的1.0表示x0 = 1
def loadDataSet(p, file_n):
    dataMat = []; labelMat = []
    fr = open(os.path.join(p, file_n))
    for line in fr.readlines():
        lineArr = line.strip().split()
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])  # 三个特征x0, x1, x2
        labelMat.append(int(lineArr[2]))  # 标准答案y
    return dataMat,labelMat

def sigmoid(inX):
    return 1.0/(1+exp(-inX))

# 梯度下降法求回归系数a,由于样本量少,我将迭代次数改成了1000次
def gradAscent(dataMatIn, classLabels):
    dataMatrix = mat(dataMatIn)             #convert to NumPy matrix
    labelMat = mat(classLabels).transpose() #convert to NumPy matrix
    m,n = shape(dataMatrix)
    alpha = 0.001  # 学习率
    maxCycles = 1000
    weights = ones((n,1))
    for k in range(maxCycles):              # heavy on matrix operations
        h = sigmoid(dataMatrix*weights)     # 模型预测值, 90 x 1
        error = h - labelMat                # 真实值与预测值之间的误差, 90 x 1
        temp = dataMatrix.transpose()* error # 交叉熵代价函数对所有参数的偏导数, 3 x 1
        weights = weights - alpha * temp  # 更新权重
    return weights

# 下面是我自己写的测试函数
def test_logistic_regression():
    dataArr, labelMat = loadDataSet(path, training_sample)  # 读入训练样本中的原始数据
    A = gradAscent(dataArr, labelMat)  # 回归系数a的值
    h = sigmoid(mat(dataArr)*A)  #预测结果h(a)的值
    print(dataArr, labelMat)
    print(A)
    print(h)
    # plotBestFit(A)

test_logistic_regression()

上面代码的输出如下:

  • 一个元组,包含两个数组:第一个数组是所有的训练样本中的观察值,也就是X,包括x0, x1, x2;第二个数组是每组观察值对应的标准答案y。
([[1.0, -0.017612, 14.053064], [1.0, -1.395634, 4.662541], [1.0, -0.752157, 6.53862], [1.0, -1.322371, 7.152853], [1.0, 0.423363, 11.054677], [1.0, 0.406704, 7.067335], [1.0, 0.667394, 12.741452], [1.0, -2.46015, 6.866805], [1.0, 0.569411, 9.548755], [1.0, -0.026632, 10.427743]], [0, 1, 0, 0, 0, 1, 0, 1, 0, 0])  
  • 本次预测出来的回归系数a,包括a0, a1, a2
[[ 1.39174871]
[-0.5227482 ]
[-0.33100373]] 
  • 根据回归系数a和(2)式中的模型预测出来的h(a)。这里预测得到的结果都是区间(0, 1)上的实数。
[[ 0.03730313]
[ 0.64060602]
[ 0.40627881]
[ 0.4293251 ]
[ 0.07665396]
[ 0.23863652]
[ 0.0401329 ]
[ 0.59985228]
[ 0.11238742]
[ 0.11446212]]

标准答案是{0, 1},如何将预测到的结果与标准答案y进行比较呢?取0.5作为阈值,大于该值的样本就划分到1这一组,小于等于该值的样本就划分到0这一组,这样就可以将数据分为两类。检查一下结果可以看到,我们现在分出来的1这一类中包括原来y=1的两个样本,另一类包括原来y=0的所有样本和一个y=1的样本(分错了)。鉴于我们选择取的样本比较少(只有10个),这样的效果其实还算非常不错的!

 

0x05 结果展示

上面已经求出了一组回归系数,它确定了不同类别数据之间的分割线。可以利用X内部(x1与x2之间的关系)的关系画出该分割线,从而更直观的感受到分类的效果。

添加下面一段代码:

# 分类效果展示,参数weights就是回归系数
def plotBestFit(weights):
    import matplotlib.pyplot as plt
    dataMat,labelMat=loadDataSet(path, training_sample)
    dataArr = array(dataMat)
    n = shape(dataArr)[0]
    xcord1 = []; ycord1 = []
    xcord2 = []; ycord2 = []
    for i in range(n):
        if int(labelMat[i])== 1:
            xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=30, c='green')
    x = arange(-3.0, 3.0, 0.1)
    y = (-weights[0]-weights[1]*x)/weights[2]  # x2 = f(x1)
    ax.plot(x.reshape(1, -1), y.reshape(1, -1))
    plt.xlabel('X1'); plt.ylabel('X2');
    plt.show()

将上面的test_logistic_regression()函数中的最后一句注释去掉,调用plotBestFit函数就可以看到分类的效果了。

这里说明一下上面代码中的第19行,这里设置了sigmoid函数的取值为1/2,也就是说取阈值为0.5来划分最后预测的结果。这样可以得到

分类效果图如下

 

  三个红色的点是原来y=1y=1的样本,有一个分错了。这里相当于将所有的数据用二维坐标(x1, x2)表示了出来,而且根据回归参数画出的线将这些点一分为二。如果有新的样本,不知道在哪一类,只用将该点画在图上,看它在这条直线的哪一边就可以分类了。

下面是使用90个训练样本得到的结果:

 

 

可以看出一个非常明显的规律是,y=1的这一类样本(红色的点)具有更小的x2值,当x2相近时则具有更大的x1值。

此时计算出来的回归系数a为:

[[ 5.262118 ]
[ 0.60847797]
[-0.75168429]]

 

0x06 预测新样本

添加一个预测函数,如下:

直接将上面计算出来的回归系数a拿来使用,测试数据其实也是《机器学习实战》这本书中的训练数据,我拆成了两份,前面90行用来做训练数据,后面10行用来当测试数据。

def predict_test_sample():
    A = [5.262118, 0.60847797, -0.75168429]  # 上面计算出来的回归系数a
    dataArr, labelMat = loadDataSet(path, testing_sample)  
    h_test = sigmoid(mat(dataArr) * mat(A).transpose())  # 将读入的数据和A转化成numpy中的矩阵
    print(h_test)  # 预测的结果

调用上面的函数,可以得到以下结果,即h(a):

[[ 0.99714035]
[ 0.04035907]
[ 0.12535895]
[ 0.99048731]
[ 0.98075409]
[ 0.97708653]
[ 0.09004989]
[ 0.97884487]
[ 0.28594188]
[ 0.00359693]]

下面是我们的测试数据(原来的训练样本后十行的数据,包括标准答案y):

0.089392    -0.715300    1
1.825662    12.693808    0
0.197445    9.744638    0
0.126117    0.922311    1
-0.679797    1.220530    1
0.677983    2.556666    1
0.761349    10.693862    0
-2.168791    0.143632    1
1.388610    9.341997    0
0.317029    14.739025    0

比较我们预测得到的h(a)和标准答案y,如果按照0.5为分界线的话,我们利用前90个样本训练出来的分类器对后面10个样本的类型预测全部正确。

 

附件:

github上的代码更新到python3.6, 2019-1-6

完整代码:https://github.com/OnlyBelter/MachineLearning_examples/tree/master/de_novo/regression

训练数据:https://github.com/OnlyBelter/MachineLearning_examples/blob/master/de_novo/data/Logistic_Regression-trainingSample.txt

测试数据:https://github.com/OnlyBelter/MachineLearning_examples/blob/master/de_novo/data/Logistic_Regression-testingSample.txt

 

0x07 参考

http://baike.baidu.com/item/logistic%E5%9B%9E%E5%BD%92

https://en.wikipedia.org/wiki/Sigmoid_function

《机器学习实战》,哈林顿著,李锐等译,人民邮电出版社,2013年6月第一版

 

0x08 转载

 

posted @ 2021-01-19 14:11  时光飞逝,逝者如斯  阅读(334)  评论(0编辑  收藏  举报