10. Regular Expression Matching[H]正则表达式匹配

题目


Given an input string(s) and a pattern(p), implement regular expression matching with support for '.' and ''.
  '.' Matches any single character.
  '
' Matches zero or more of the preceding element.

The matching should cover the entire input string(not partial).
Note:
  s could be empty and contains only lowercase letters a-z.
  p could be empty and contains only lowercase letters a-z, and characters . or * .

Example1:
  Input:s = "aa" p="a"
  Output:false
  Explanation:"a" does not match the entire string "a"
Example2:
  Input:s = "aa" p="a*"
  Output:true
  Explanation:".*" means zero or more of the precedeng element, 'a'. Therefore, by repeating 'a' once, it become "a".

Example3:
  Input:s = "ab" p=".*"
  Output:true
  Explanation:"." means " zero or more () of any character (.) " .

思路


动态规划

Step1. 刻画一个最优解的结构特征

\(dp[i][j]\)表示\(s[0,\cdots,i-1]\)\(p[0,\cdots,j-1]\)是否匹配

Step2. 递归定义最优解的值

1.\(p[j-1] == s [i-1]\),则状态保存,\(dp[i][j] = dp[i-1][j-1]\)
2.\(p[j-1] ==\) ..与任意单个字符匹配,于是状态保存,\(dp[i][j] = dp[i-1][j-1]\)
3.$p[j-1] == $**只能以X*的形式才能匹配,但是由于*究竟作为几个字符匹配不确定,此时有两种情况:

  • \(p[j-2] != s[i-1]\),此时\(s[0,\cdots,i-1]\)\(p[0,\cdots,j-3]\)匹配,即\(dp[i][j] = dp[i][j-2]\)
  • \(p[j-2] == s[i-1]\) 或者 $p[j-2] == $ .,此时应分为三种情况:
    *作为零个字符,\(dp[i][j] = dp[i][j-2]\)
    *作为一个字符,\(dp[i][j] = dp[i][j-1]\)
    *作为多个字符,\(dp[i][j] = dp[i-1][j]\)
Step3. 计算最优解的值

根据状态转移表,以及递推公式,计算dp[i][j]

Tips


数组初始化(python)

(1)相同的值初始化(一维数组)
#方法一:list1 = [a a a ]
list1 = [ a for i in range(3)]
#方法二:
list1 = [a] * 3
(2)二维数组初始化

初始化一个\(4*3\)每项固定为0的数组

list2 = [ [0 for i in range(3)] for j in range(4)]

C++

class Solution {
public:
    bool isMatch(string s, string p) {
        int m = s.length(),n = p.length();
        bool dp[m+1][n+1];
        dp[0][0] = true;
        //初始化第0行,除了[0][0]全为false,因为空串p只能匹配空串,其他都无能匹配
        for (int i = 1; i <= m; i++)
            dp[i][0] = false;
        //初始化第0列,只有X*能匹配空串
        for (int j = 1; j <= n; j++)
            dp[0][j] = j > 1 && '*' == p[j - 1] && dp[0][j - 2];
        for (int i = 1; i <= m; i++)
        {
           for (int j = 1; j <= n; j++)
           {
               if (p[j - 1] == '*')
               {
                   dp[i][j] = dp[i][j - 2] || (s[i - 1] == p[j - 2] || p[j - 2] == '.') && dp[i - 1][j];
               }
               else //只有当前字符完全匹配,才能传递dp[i-1][j-1] 值
               {
                   dp[i][j] = (p[j - 1] == '.' || s[i - 1] == p[j - 1]) && dp[i - 1][j - 1];
               }
           }
        }
        return dp[m][n];
    }
};

Python

def isMatch(self, s, p):
        """
        :type s: str
        :type p: str
        :rtype: bool
        """
        len_s = len(s)
        len_p = len(p)
        dp = [[False for i in range(len_p+1)]for j in range(len_s+1)]
        dp[0][0] = True
        for i in range(1, len_p + 1):
            dp [0][i] = i>1 and dp[0][i - 2] and p[i-1] == '*'
        for i in range (1, len_s + 1 ):
            for j in range(1, len_p + 1):
                if p[j - 1] == '*':
                    #状态保留
                    dp[i][j] = dp[i][j -2] or (s[i-1] == p[j-2] or p[j-2] == '.') and dp[i-1][j]
                else:
                    dp[i][j] = (p[j-1] == '.' or s[i-1] == p[j-1]) and dp[i-1][j-1]
        return dp[len_s][len_p]
posted @ 2019-06-09 14:35  风雪初晴,宜下江南  阅读(691)  评论(0编辑  收藏  举报