5. Longest Palindromic Substring[M]最长回文子串

题目

Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000.
Example1:
  Input: "babad"
  Output: "bab"
  Note: "aba is also a valid answer. "
Example2:
  Input: "cbbd"
  Output: "bb"

思路


思路1:动态规划

Step1:刻画一个最优解方程

\(dp[i][j]\)表示子串\(s[i, \cdots,j]\)是否是一个回文子串

Step2:递归定义最优解的值

(1)初始化:

  • dp[i][i] = true, i = [0, 1, ... ,n-1];
  • dp[i][i-1] = true, i = [1,2,...,n-1]
  • 其余为false

(2)状态转移表

  • dp[i][j] = (s[i] == s[j] && dp[i+1][j-1])

状态转移表更新如图1:

Step3:计算最优解的值

根据状态转移表,以及递推公式,计算dp[i][j]。

思路2:中心扩展法

以某字符为中心,分别计算回文长度。分为回文子串为奇数、偶数两种情况

  • 奇数:以当前遍历字符为中心判断
  • 偶数:以当前遍历字符与其相邻字符为中心判断

思路3:Manacher算法

又称为马拉车算法,可以在时间复杂都为O(n)的情况下求解一个字符串的最长回文子串的问题。
Manacher算法通过为字符串虚拟增加#(并不是真的增加#),使得长度为奇数和长度为偶数的回文子串放在一起考虑(使得回文子串长度都为奇数),如图1。具体操作:在字符串的首部、尾部、相邻字符之间虚拟增加#号。

(1)Len数组的性质
(2)Len数组的计算

思路4:字符串分片(python)

利用字符串的分片操作来检测是否是回文。

Tips


动态规划

将待求解问题分解为若干个非互相独立的子问题,先求子问题,再求原问题。(通常需要将不同阶段的不同状态保存在二维数组内)。

C++


  • 思路1
class Solution {
public:
    string longestPalindrome(string s) {
        
        int nLength = s.size();
        if(nLength<1)
            return s;
        vector<vector<bool> > dp(nLength, vector<bool>(nLength, 0)); //dp[i][j]表示子串s[i,...,j]是否是一个回文子串
        int strBegin = 0;  //回文子串的开始
        int strEnd = 0; //回文子串的结尾
        
        //初始化
        for(int i = 1;i < nLength; i++){
            dp[i][i] = true;
            dp[i][i-1] = true;  //这个是针对子串长度为2,"bb"、"aa"的情况
        }
        dp[0][0] = true;
        
        //动态规划
        for(int i = 2;i <= nLength; i++){ //回文长度
            for(int j = 0; j <= nLength - i ; j++){  //回文子串起始
                
                if(s[j] == s[i+j - 1] && dp[j+1][i+j-2]){
                    dp[j][j+i-1] = true;
                    if(strEnd - strBegin + 1 < i){
                        strBegin = j;
                        strEnd = i + j -1; 
                    }
                }
            }
        }
        
        return s.substr(strBegin,strEnd-strBegin+1);
    }
};
  • 思路2
class Solution {
public:
    string longestPalindrome(string s) {
        
        int nLength = s.size();
        if(nLength == 1)
            return s;
        
        int strBegin = 0;
        int maxLength = 0;
        for(int i = 1;i < nLength; i++){
            
            //如果回文子串是奇数,以i为中心搜索
            int left = i - 1;
            int right = i + 1;
            while(left >=0 && right < nLength && s[left] == s[right] ) 
            {   
                left --;
                right ++;
            }
            
            if(right - left - 1 > maxLength){ //right -1 - (left + 1) + 1
                maxLength = right - left - 1;
                strBegin = left + 1;
            }
             
            //如果回文子串是偶数,
            left = i - 1;
            right = i;
            while(left >=0 && right < nLength && s[left] == s[right]){    
                left --;
                right ++;
            }
            
            if(right - left - 1 > maxLength){ 
                maxLength = right - left - 1;
                strBegin = left + 1;
            }
        } 
        return s.substr(strBegin,maxLength);
    }
};
  • 思路3
class Solution {
public:
    string longestPalindrome(string s) {
        
        if(s.size() <= 1)
            return s;
        
        string dummy = init(s);
        int nLength = dummy.size();
            
        int maxLen = 0;
        int mx = 0;
        int id = 0;
        vector<int> len(nLength, 0);
        
        for(int i =1;i< nLength - 1; i++){
            if(i < mx)
                len[i] = min(len[2*id -i], mx - i);
            else
                len[i] = 1;
            
            while(dummy[i - len[i]] == dummy[i + len[i]])
                len[i] ++;
            
            if(mx < i + len[i]){
                id = i;
                mx = i + len[i];
            }
        }
        
        int index = 0;
        for(int i = 1; i < nLength-1; i++){
            if(len[i] > maxLen){
                maxLen = len[i];
                index = i;
            }
        }
        return s.substr((index - maxLen)/2, maxLen-1);

    }
    
    
    //初始化
    string init(const string& s){
        string result = "$#";
        int nLength = s.size();
        
        for(int i=0;i < nLength; i++){
            
            result.push_back(s[i]);
            result.push_back('#');
        }
        
        return result;
    }   
};

Python

class Solution(object):
    def longestPalindrome(self, s):
        """
        :type s: str
        :rtype: str
        """
        
        if len(s) == 1:
            return s
        
        result = ""
        
        for i in range(len(s)):
            j = i + 1
            
            while j <= len(s) and len(result) <= len(s[i:]):
                if s[i:j] == s[i:j][::-1] and len(s[i:j]) > len(result):
                    result = s[i:j]
                j += 1
                
        return result

参考

[1] https://blog.csdn.net/suool/article/details/38383045

posted @ 2019-06-09 14:27  风雪初晴,宜下江南  阅读(126)  评论(0编辑  收藏  举报