Python-线程同步
1、线程同步
线程同步,线程间协同,通过某种技术,让一个线程访问某些数据时,其他线程不能访问这些数据,直到该线程完成对数的操作做。
不同操作系统实现技术有所不同,有 临界区(Critical Section),互斥量(Mutex), 信号量(Semaphore),时间Event等
2、Event
Even事件,是线程间通信机制中最简单的实现,使用一个内部的标记flag,通过flag的True或False的变化来进行操作。
名称 | 含义 |
set() | 标记设置为True |
clear() | 标记设置为False |
is_set() | 标记是否为True |
wait(timeout=None) | 设置等待标记为True的时长,None为无限等待,等到返回True,未等到超时了,返回False |
测试:需求:老板雇了一个员工,让他生成杯子,老板一直等待这个工人,知道生产了10个杯子。
1、普通线程实现:
1 import threading 2 import time 3 4 flag = False 5 6 def worker(count=10): 7 print('im working') 8 global flag 9 cpus = [] 10 while True: 11 time.sleep(0.1) 12 cpus.append(1) 13 if len(cpus) > 10: 14 flag = True 15 break 16 print(cpus) 17 18 def boss(): 19 global flag 20 while True: 21 time.sleep(2) 22 if flag: 23 print('good job') 24 break 25 26 w = threading.Thread(target=worker) 27 b = threading.Thread(target= boss) 28 w.start() 29 b.start()
结果:
1 im working 2 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] 3 good job 4 5 Process finished with exit code 0
2、利用Event 类实现:
1 from threading import Event, Thread 2 import logging 3 import time 4 5 FORMAT = '%(asctime)s %(threadName)s %(thread)d %(message)s' 6 logging.basicConfig(format=FORMAT, level=logging.INFO) 7 8 def boss(event:Event): 9 logging.info('boss') 10 event.wait() 11 logging.info('good job') 12 13 def worker(event:Event, count=10): 14 logging.info('working') 15 cups = [] 16 while True: 17 logging.info('make 1') 18 time.sleep(0.5) 19 cups.append(1) 20 if len(cups) >= count: 21 event.set() 22 break 23 logging.info('finished {}'.format(cups)) 24 25 event = Event() 26 w = Thread(target=worker, args=(event,)) 27 b = Thread(target=boss, args=(event,)) 28 w.start() 29 b.start()
结果:
1 2018-10-12 10:58:11,515 Thread-1 8448 working 2 2018-10-12 10:58:11,515 Thread-1 8448 make 1 3 2018-10-12 10:58:11,515 Thread-2 1064 boss 4 2018-10-12 10:58:12,030 Thread-1 8448 make 1 5 2018-10-12 10:58:12,545 Thread-1 8448 make 1 6 2018-10-12 10:58:13,060 Thread-1 8448 make 1 7 2018-10-12 10:58:13,574 Thread-1 8448 make 1 8 2018-10-12 10:58:14,089 Thread-1 8448 make 1 9 2018-10-12 10:58:14,604 Thread-1 8448 make 1 10 2018-10-12 10:58:15,119 Thread-1 8448 make 1 11 2018-10-12 10:58:15,634 Thread-1 8448 make 1 12 2018-10-12 10:58:16,148 Thread-1 8448 make 1 13 2018-10-12 10:58:16,663 Thread-1 8448 finished [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] 14 2018-10-12 10:58:16,663 Thread-2 1064 good job 15 16 Process finished with exit code 0
总结:使用同一个Event实例的标记flag,谁wait 就是等到flag变为 True,或等到超时返回False,不限等待个数。
wait使用:
1 from threading import Event, Thread 2 import logging 3 import time 4 5 FORMAT = '%(asctime)s %(threadName)s %(thread)d %(message)s' 6 logging.basicConfig(format=FORMAT, level=logging.INFO) 7 8 def boss(event:Event): 9 logging.info('boss') 10 while event.wait(6): 11 logging.info('good job') 12 break 13 14 15 def worker(event:Event, count=10): 16 logging.info('working') 17 cups = [] 18 while True: 19 logging.info('make 1') 20 time.sleep(0.5) 21 cups.append(1) 22 if len(cups) >= count: 23 event.set() 24 break 25 logging.info('finished {}'.format(cups)) 26 27 event = Event() 28 w = Thread(target=worker, args=(event,)) 29 b = Thread(target=boss, args=(event,)) 30 w.start() 31 b.start()
Event练习:实现Timer,延时执行的线程,延时计add(x, y)
1 from threading import Thread, Event 2 3 class Timer: 4 def __init__(self, interval, fn, args=(), kwargs={}): 5 self.interval = interval 6 self.fn = fn 7 self.args = args 8 self.kwargs = kwargs 9 self.event = Event() 10 11 def start(self): 12 Thread(target=self.run).start() 13 14 def cancel(self): 15 self.event.set() 16 17 def run(self): 18 self.event.wait(self.interval) 19 if not self.event.is_set(): 20 print(self.args, self.kwargs) 21 self.fn(*self.args, **self.kwargs) 22 self.event.set() 23 def add(x, y): 24 print(x + y) 25 26 t = Timer(4, add,(4, 5) ) 27 print(t.args, t.kwargs) 28 t.start() 29 # t.cancel() 30 31 print('--------------------------------') 32 print('main thread exit') 33 add(5, 6)
结果:
1 (4, 5) {} 2 -------------------------------- 3 main thread exit 4 11 5 (4, 5) {} 6 9
测试:cancel
1 from threading import Thread, Event 2 3 class Timer: 4 def __init__(self, interval, fn, args=(), kwargs={}): 5 self.interval = interval 6 self.fn = fn 7 self.args = args 8 self.kwargs = kwargs 9 self.event = Event() 10 11 def start(self): 12 Thread(target=self.run).start() 13 14 def cancel(self): 15 self.event.set() 16 17 def run(self): 18 self.event.wait(self.interval) 19 if not self.event.is_set(): 20 self.fn(*self.args, **self.kwargs) 21 self.event.set() # 习惯上 做完了,不允许在做一次了 22 # print(self.event.is_set()) 23 def add(x, y): 24 print(x + y) 25 26 t = Timer(2, add,(4, 5) ) 27 t.start() 28 t.cancel() 29 30 print('--------------------------------') 31 print('main thread exit') 32 add(5, 6)
结果:
1 -------------------------------- 2 main thread exit 3 11 4 5 Process finished with exit code 0
3、Lock
锁,凡是存在共享资源争抢的地方都可以使用锁,从而保证只有一个使用这可以完全使用这个资源。
Lock,锁,一旦线程获得锁,其他试图获取锁的线程将被阻塞。
名称 | 含义 |
acquire(blocking=True, timeout=-1) | 默认阻塞,阻塞可以设置超时时间,非阻塞时,timeout禁止设置,成功获取锁,返回True,否则返回Fasle |
release() | 释放锁,可以从任何线程调用释放,已上的锁,会被重置为unlock未上锁的锁上调用,抛RuntimeError异常 |
测试:需求:订单生产1000个杯子,组织10个工人生产。
1、非锁模式:
1 import threading 2 from threading import Thread , Lock 3 import logging 4 import time 5 6 FORMAT = '%(asctime)s %(threadName)s %(thread)d %(message)s' 7 logging.basicConfig(format=FORMAT,level=logging.INFO) 8 9 cups = [] 10 11 def worker(count=10): 12 logging.info("I'm workin") 13 while len(cups) < count: 14 time.sleep(0.0001) 15 cups.append(1) 16 logging.info("i finished, cups={}".format(len(cups))) 17 18 for _ in range(10): 19 Thread(target=worker,args=(1000,)).start()
结果:从结果看出不是自己想要的结果,因为if判断的时候,也会被其他的线程打断
1 2018-10-14 17:16:52,317 Thread-1 5444 I'm workin 2 2018-10-14 17:16:52,348 Thread-2 6896 I'm workin 3 2018-10-14 17:16:52,348 Thread-3 2900 I'm workin 4 2018-10-14 17:16:52,348 Thread-4 4104 I'm workin 5 2018-10-14 17:16:52,348 Thread-5 7448 I'm workin 6 2018-10-14 17:16:52,348 Thread-6 4276 I'm workin 7 2018-10-14 17:16:52,348 Thread-7 3752 I'm workin 8 2018-10-14 17:16:52,348 Thread-8 6156 I'm workin 9 2018-10-14 17:16:52,348 Thread-9 3568 I'm workin 10 2018-10-14 17:16:52,348 Thread-10 7428 I'm workin 11 2018-10-14 17:16:53,941 Thread-1 5444 i finished, cups=1000 12 2018-10-14 17:16:53,941 Thread-10 7428 i finished, cups=1001 13 2018-10-14 17:16:53,941 Thread-6 4276 i finished, cups=1002 14 2018-10-14 17:16:53,941 Thread-5 7448 i finished, cups=1003 15 2018-10-14 17:16:53,941 Thread-9 3568 i finished, cups=1004 16 2018-10-14 17:16:53,941 Thread-2 6896 i finished, cups=1005 17 2018-10-14 17:16:53,956 Thread-8 6156 i finished, cups=1006 18 2018-10-14 17:16:53,956 Thread-7 3752 i finished, cups=1007 19 2018-10-14 17:16:53,956 Thread-4 4104 i finished, cups=1008 20 2018-10-14 17:16:53,956 Thread-3 2900 i finished, cups=1009 21 22 Process finished with exit code 0
2、加锁测试
1 import threading 2 from threading import Thread , Lock 3 import logging 4 import time 5 6 FORMAT = '%(asctime)s %(threadName)s %(thread)d %(message)s' 7 logging.basicConfig(format=FORMAT,level=logging.INFO) 8 9 cups = [] 10 lock = Lock() 11 12 def worker(count=10): 13 logging.info("I'm workin") 14 flag = False 15 16 while True: 17 lock.acquire() 18 19 if len(cups) >= count: 20 flag = True 21 # lock.release() # 注意释放 锁 的位置,这里不合适 22 23 time.sleep(0.0001) 24 if not flag: 25 cups.append(1) 26 lock.release() # 注意释放 锁 的位置 27 if flag: 28 break 29 30 logging.info("i finished, cups={}".format(len(cups))) 31 32 for _ in range(10): 33 Thread(target=worker,args=(1000,)).start()
结果:可以看到针对同一个资源,使用Lock
1 D:\python3.7\python.exe E:/code_pycharm/复习/t1.py 2 2018-10-14 17:43:42,748 Thread-1 1628 I'm workin 3 2018-10-14 17:43:42,748 Thread-2 7260 I'm workin 4 2018-10-14 17:43:42,748 Thread-3 1308 I'm workin 5 2018-10-14 17:43:42,748 Thread-4 7280 I'm workin 6 2018-10-14 17:43:42,748 Thread-5 7676 I'm workin 7 2018-10-14 17:43:42,748 Thread-6 7288 I'm workin 8 2018-10-14 17:43:42,749 Thread-7 276 I'm workin 9 2018-10-14 17:43:42,749 Thread-8 1052 I'm workin 10 2018-10-14 17:43:42,749 Thread-9 3144 I'm workin 11 2018-10-14 17:43:42,749 Thread-10 5732 I'm workin 12 2018-10-14 17:43:43,786 Thread-6 7288 i finished, cups=1000 13 2018-10-14 17:43:43,787 Thread-10 5732 i finished, cups=1000 14 2018-10-14 17:43:43,788 Thread-5 7676 i finished, cups=1000 15 2018-10-14 17:43:43,789 Thread-3 1308 i finished, cups=1000 16 2018-10-14 17:43:43,790 Thread-1 1628 i finished, cups=1000 17 2018-10-14 17:43:43,791 Thread-8 1052 i finished, cups=1000 18 2018-10-14 17:43:43,792 Thread-9 3144 i finished, cups=1000 19 2018-10-14 17:43:43,793 Thread-4 7280 i finished, cups=1000 20 2018-10-14 17:43:43,794 Thread-2 7260 i finished, cups=1000 21 2018-10-14 17:43:43,795 Thread-7 276 i finished, cups=1000 22 23 Process finished with exit code 0
总结:每个线程获取锁之后,一定要释放锁(但是要注意释放的位置)。对于同一个资源,某线程获锁后,其他线程要不永久等待,要不设置过期时间,过期后,返回False,再跳过有锁的代码块,往下进行。永久等待,就是等获取锁的线程释放后,自己获取锁。锁的释放主要注意一点是 线程安全,不会产生不确定结果。
测试:无锁,计算类,加减
1、无锁测试
1 import threading 2 from threading import Thread , Lock 3 import logging 4 import time 5 6 FORMAT = '%(asctime)s %(threadName)s %(thread)d %(message)s' 7 logging.basicConfig(format=FORMAT,level=logging.INFO) 8 9 class Counter: 10 def __init__(self): 11 self._val = 0 12 13 @property 14 def value(self): 15 return self._val 16 17 def inc(self): 18 self._val += 1 19 20 def dec(self): 21 self._val -= 1 22 23 def run(c:Counter, count=100): 24 for _ in range(count): 25 for i in range(-50, 50): 26 if i < 0: 27 c.dec() 28 else: 29 c.inc() 30 31 c = Counter() 32 c1 = 100000 # 线程数 33 c2 = 10 34 for i in range(c1): 35 Thread(target=run, args=(c, c2)).start() 36 37 print(c.value)
结果:随着 计算量增多,导致出现 不确定结果,所以线程不安全(c2 大于100后,就会出现结果不是 0 的结果)
0
Process finished with exit code 0
2、加锁,减锁
一般来说,加锁就需要减锁,但是加锁后解锁前,还要有一些代码执行,就有可能抛异常,一旦异常出现,锁是无法释放,但是当前线程可能因为这个异常被终止,这就产生了死锁。
加锁,解锁常用语句:
1、使用try。。。finally语句保证锁的释放
2、with上下文管理,锁对象支持上下文管理
测试:锁,计算类,加减
1 import threading 2 from threading import Thread , Lock 3 import logging 4 import time 5 6 FORMAT = '%(asctime)s %(threadName)s %(thread)d %(message)s' 7 logging.basicConfig(format=FORMAT,level=logging.INFO) 8 9 class Counter: 10 def __init__(self): 11 self._val = 0 12 self.lock = Lock() 13 14 @property 15 def value(self): 16 with self.lock: 17 return self._val 18 19 def inc(self): 20 with self.lock: 21 self._val += 1 22 23 def dec(self): 24 try: 25 self.lock.acquire() 26 self._val -= 1 27 finally: 28 self.lock.release() 29 30 31 def run(c:Counter, count=100): 32 for _ in range(count): 33 for i in range(-50, 50): 34 if i < 0: 35 c.dec() 36 else: 37 c.inc() 38 39 c = Counter() 40 c1 = 10 # 线程数 41 c2 = 1000 42 for i in range(c1): 43 Thread(target=run, args=(c, c2)).start() 44 45 print(c.value) 46 # -35 47 48 49 因为多线程,执行的时候,主线程中的print早就打印完了,而子线程还没结束,所以得到的值不是0, 是某一时刻值
正对上面的问题作出修正,获取的值是0,也就是等子线程都结束了,在print
1 import threading 2 from threading import Thread , Lock 3 import logging 4 import time 5 6 FORMAT = '%(asctime)s %(threadName)s %(thread)d %(message)s' 7 logging.basicConfig(format=FORMAT,level=logging.INFO) 8 9 class Counter: 10 def __init__(self): 11 self._val = 0 12 self.lock = Lock() 13 14 @property 15 def value(self): 16 with self.lock: 17 return self._val 18 19 def inc(self): 20 with self.lock: 21 self._val += 1 22 23 def dec(self): 24 try: 25 self.lock.acquire() 26 self._val -= 1 27 finally: 28 self.lock.release() 29 30 31 def run(c:Counter, count=100): 32 for _ in range(count): 33 for i in range(-50, 50): 34 if i < 0: 35 c.dec() 36 else: 37 c.inc() 38 39 c = Counter() 40 c1 = 10 # 线程数 41 c2 = 1000 42 43 # 方式 1:判断当前活着的线程是否为1 44 for i in range(c1): 45 Thread(target=run, args=(c, c2)).start() 46 47 while True: 48 time.sleep(1) 49 if threading.active_count() == 1: # 只剩下主线程 50 print(threading.enumerate(), '-----') 51 print(c.value) 52 break 53 else: 54 print(threading.enumerate()) 55 56 # 方式 2:使用join,只要有一个线程join 主线程就等待 57 thread = [] 58 for i in range(c1): 59 t = Thread(target=run, args=(c, c2)) 60 thread.append(t) 61 t.start() 62 63 for t in thread: 64 t.join() 65 66 print(c.value)
锁的应用场景:
锁适用于 访问和修改 同一个共享资源的时候,即读写同一资源的时候。
如果全部都是读取同一个资源 时不需要锁的。因为这时可以认为共享资源是不可变得,每一次读取都是一样的值,所以不用加锁。
使用锁注意事项:
- 少用锁,必要时用锁。使用了锁,多线程访问被锁的资源的时候,就成了串行,要么排队,要么争抢。
- 加锁时间越短越好,不需要立即释放。
- 一定避免死锁。
但是,不使用锁,提高了效率,但是结果如果不是正确的,效率也没用,所以正确性排第一
测试:实现非阻塞的锁,也就是说,非等待,没有获取锁,就去干别的事:
1 import threading 2 from threading import Thread , Lock 3 import logging 4 import time 5 6 FORMAT = '%(asctime)s %(threadName)s %(thread)d %(message)s' 7 logging.basicConfig(format=FORMAT,level=logging.INFO) 8 9 def worker(tasks): 10 for task in tasks: 11 time.sleep(0.001) 12 if task.lock.acquire(False):# 非等待模式,没有获取就else 13 logging.info("{}{} begin to start".format(threading.current_thread(), task.name)) 14 # s适当的时机释放锁,为了演示 不释放了 15 16 else: 17 logging.info("{}{} is working".format(threading.current_thread(), task.name)) 18 19 class Task: 20 def __init__(self, name): 21 self.name = name 22 self.lock = Lock() 23 24 # 构造10 个任务 25 tasks = [Task('task--{}'.format(x)) for x in range(10)] 26 27 # 启动5 个线程 28 for i in range(5): 29 threading.Thread(target=worker, name='work -- {}'.format(i), args=(tasks,)).start()
结果:
1 D:\python3.7\python.exe E:/code_pycharm/复习/t1.py 2 1 3 2018-10-14 20:23:57,046 work -- 0 9316 <Thread(work -- 0, started 9316)>task--0 begin to start 4 2 5 2018-10-14 20:23:57,046 work -- 1 10260 <Thread(work -- 1, started 10260)>task--0 is working 6 2018-10-14 20:23:57,047 work -- 0 9316 <Thread(work -- 0, started 9316)>task--1 begin to start3 7 4 8 5 9 6 10 7 11 12 2018-10-14 20:23:57,047 work -- 3 5076 <Thread(work -- 3, started 5076)>task--0 is working 13 2018-10-14 20:23:57,047 work -- 4 8464 <Thread(work -- 4, started 8464)>task--0 is working 14 2018-10-14 20:23:57,047 work -- 2 6196 <Thread(work -- 2, started 6196)>task--0 is working 15 2018-10-14 20:23:57,047 work -- 1 10260 <Thread(work -- 1, started 10260)>task--1 is working 16 2018-10-14 20:23:57,048 work -- 3 5076 <Thread(work -- 3, started 5076)>task--1 is working 17 2018-10-14 20:23:57,048 work -- 0 9316 <Thread(work -- 0, started 9316)>task--2 begin to start 18 2018-10-14 20:23:57,048 work -- 2 6196 <Thread(work -- 2, started 6196)>task--1 is working 19 2018-10-14 20:23:57,048 work -- 1 10260 <Thread(work -- 1, started 10260)>task--2 is working 20 2018-10-14 20:23:57,048 work -- 4 8464 <Thread(work -- 4, started 8464)>task--1 is working 21 8 22 9 23 10 24 11 25 12 26 13 27 1415 28 29 16 30 17 31 2018-10-14 20:23:57,049 work -- 4 8464 <Thread(work -- 4, started 8464)>task--2 is working 32 2018-10-14 20:23:57,049 work -- 3 5076 <Thread(work -- 3, started 5076)>task--2 is working 33 2018-10-14 20:23:57,049 work -- 0 9316 <Thread(work -- 0, started 9316)>task--3 begin to start 34 2018-10-14 20:23:57,049 work -- 2 6196 <Thread(work -- 2, started 6196)>task--2 is working 35 2018-10-14 20:23:57,049 work -- 1 10260 <Thread(work -- 1, started 10260)>task--3 is working 36 18 37 1920 38 39 2122 40 41 2018-10-14 20:23:57,050 work -- 3 5076 <Thread(work -- 3, started 5076)>task--3 is working 42 2018-10-14 20:23:57,050 work -- 1 10260 <Thread(work -- 1, started 10260)>task--4 begin to start 43 2018-10-14 20:23:57,050 work -- 4 8464 <Thread(work -- 4, started 8464)>task--3 is working 44 2018-10-14 20:23:57,050 work -- 0 9316 <Thread(work -- 0, started 9316)>task--4 is working 45 2018-10-14 20:23:57,050 work -- 2 6196 <Thread(work -- 2, started 6196)>task--3 is working 46 2018-10-14 20:23:57,051 work -- 1 10260 <Thread(work -- 1, started 10260)>task--5 begin to start 47 2018-10-14 20:23:57,051 work -- 4 8464 <Thread(work -- 4, started 8464)>task--4 is working 48 23 49 2018-10-14 20:23:57,051 work -- 0 9316 <Thread(work -- 0, started 9316)>task--5 is working 50 24 51 2018-10-14 20:23:57,051 work -- 3 5076 <Thread(work -- 3, started 5076)>task--4 is working 52 25 53 26 54 2018-10-14 20:23:57,051 work -- 2 6196 <Thread(work -- 2, started 6196)>task--4 is working 55 27 56 2018-10-14 20:23:57,052 work -- 1 10260 <Thread(work -- 1, started 10260)>task--6 begin to start 57 2018-10-14 20:23:57,052 work -- 3 5076 <Thread(work -- 3, started 5076)>task--5 is working 58 28 59 29 60 30 61 31 62 2018-10-14 20:23:57,052 work -- 4 8464 <Thread(work -- 4, started 8464)>task--5 is working 63 32 64 2018-10-14 20:23:57,052 work -- 0 9316 <Thread(work -- 0, started 9316)>task--6 is working 65 2018-10-14 20:23:57,052 work -- 2 6196 <Thread(work -- 2, started 6196)>task--5 is working 66 2018-10-14 20:23:57,053 work -- 0 9316 <Thread(work -- 0, started 9316)>task--7 begin to start 67 33 68 2018-10-14 20:23:57,053 work -- 3 5076 <Thread(work -- 3, started 5076)>task--6 is working 69 3435 70 71 2018-10-14 20:23:57,053 work -- 4 8464 <Thread(work -- 4, started 8464)>task--6 is working 72 36 73 2018-10-14 20:23:57,053 work -- 1 10260 <Thread(work -- 1, started 10260)>task--7 is working 74 37 75 2018-10-14 20:23:57,053 work -- 2 6196 <Thread(work -- 2, started 6196)>task--6 is working 76 2018-10-14 20:23:57,054 work -- 3 5076 <Thread(work -- 3, started 5076)>task--7 is working 77 38 78 2018-10-14 20:23:57,054 work -- 0 9316 <Thread(work -- 0, started 9316)>task--8 begin to start 79 39 80 40 81 2018-10-14 20:23:57,054 work -- 4 8464 <Thread(work -- 4, started 8464)>task--7 is working 82 41 83 42 84 2018-10-14 20:23:57,054 work -- 1 10260 <Thread(work -- 1, started 10260)>task--8 is working 85 2018-10-14 20:23:57,054 work -- 2 6196 <Thread(work -- 2, started 6196)>task--7 is working 86 43 87 44 88 45 89 46 90 47 91 2018-10-14 20:23:57,055 work -- 3 5076 <Thread(work -- 3, started 5076)>task--8 is working 92 2018-10-14 20:23:57,055 work -- 0 9316 <Thread(work -- 0, started 9316)>task--9 begin to start 93 2018-10-14 20:23:57,055 work -- 1 10260 <Thread(work -- 1, started 10260)>task--9 is working 94 2018-10-14 20:23:57,055 work -- 2 6196 <Thread(work -- 2, started 6196)>task--8 is working 95 2018-10-14 20:23:57,055 work -- 4 8464 <Thread(work -- 4, started 8464)>task--8 is working 96 48 97 49 98 50 99 2018-10-14 20:23:57,056 work -- 2 6196 <Thread(work -- 2, started 6196)>task--9 is working 100 2018-10-14 20:23:57,056 work -- 3 5076 <Thread(work -- 3, started 5076)>task--9 is working 101 2018-10-14 20:23:57,056 work -- 4 8464 <Thread(work -- 4, started 8464)>task--9 is working 102 103 Process finished with exit code 0
4、可重入锁RLock,也叫递归锁
可重入锁,是线程相关的锁。
线程A 获得可重入锁,并可以多次成功获取,不会阻塞,最后要在线程A 中做 和acquire次数相同的release
测试单线程:
1 import threading 2 from threading import Thread , Lock 3 import logging 4 import time 5 6 FORMAT = '%(asctime)s %(threadName)s %(thread)d %(message)s' 7 logging.basicConfig(format=FORMAT,level=logging.INFO) 8 9 lock = threading.RLock() 10 11 print(lock.acquire()) 12 print('----------------') 13 print(lock.acquire(False)) 14 print(lock.acquire()) 15 print(lock.acquire(timeout=4)) 16 print('lock in main thread{}'.format(lock)) 17 # ------------------------------------------------------ 18 lock.release() 19 lock.release() 20 lock.release() 21 lock.release() 22 print("main thread {}".format(threading.current_thread().ident)) 23 print('lock in main thread{}'.format(lock)) 24 # ------------------------------------------------------ 25 # lock.release() # 多release()一次,抛异常 26 # 27 # print('lock in main thread{}'.format(lock)) 28 29 # ------------------------------------------------------ 30 print(lock.acquire(False)) 31 print('lock in main thread{}'.format(lock)) 32 # threading.Thread(3, lambda x:x.release(), args=(lock,)).start() # 上一句的锁是主线程的,但是像现在夸线程了,所以抛异常 33 lock.release()
结果:
1 True 2 ---------------- 3 True 4 True 5 True 6 lock in main thread<locked _thread.RLock object owner=9060 count=4 at 0x0000000002930E68> 7 main thread 9060 8 lock in main thread<unlocked _thread.RLock object owner=0 count=0 at 0x0000000002930E68> 9 True 10 lock in main thread<locked _thread.RLock object owner=9060 count=1 at 0x0000000002930E68> 11 12 Process finished with exit code 0
测试多线程:
1 import threading 2 from threading import Thread , Lock 3 import logging 4 import time 5 6 FORMAT = '%(asctime)s %(threadName)s %(thread)d %(message)s' 7 logging.basicConfig(format=FORMAT,level=logging.INFO) 8 9 lock = threading.RLock() 10 11 print(lock.acquire()) 12 print('----------------') 13 print(lock.acquire(False)) 14 print(lock.acquire()) 15 print(lock.acquire(timeout=4)) 16 print('lock in main thread{}'.format(lock)) 17 # ------------------------------------------------------ 18 lock.release() 19 lock.release() 20 lock.release() 21 # lock.release() 22 print('==', 'lock in main thread{}'.format(lock)) 23 24 def sub(l): 25 logging.info('sub thread') 26 l.acquire() 27 logging.info('end sub') 28 print('2', lock) 29 30 t = threading.Thread(target=sub, args=(lock,)) 31 t.start() 32 33 print('1', lock) 34 35 print('===== end ====')
结果:
1 True 2 ---------------- 3 True 4 True 5 True 6 lock in main thread<locked _thread.RLock object owner=9720 count=4 at 0x00000000021F0E68> 7 == lock in main thread<locked _thread.RLock object owner=9720 count=1 at 0x00000000021F0E68> 8 1 <locked _thread.RLock object owner=9720 count=1 at 0x00000000021F0E68> 9 ===== end ==== 10 2018-10-14 21:51:46,765 Thread-1 10840 sub thread 11 12 13 可以看出:主线程的lock的count > 0, 子线程是无法获取锁,只能等待 14
可重入锁,与线程相关,可在一个线程中获取锁, 并可继续在同一线程中不阻塞获取锁。当锁未释放完,其他线程获取锁会被阻塞,直到当前持有锁的线程释放完锁。
5、Condition
构造方法Condition( lock = None),可以传入一个Lock或一个RLock对象,默认是RLock()
名称 | 含义 |
acquire(*args) | 获取锁 |
wait(self,timeout=None) | 等待或超时 |
notify(n=1) | 唤醒至多指定数目个数的等待线程,没有等待的线程就没有任何操作 |
notify_all() | 唤醒所有等待的线程 |
Condition 用于生产者,消费者模型,为了解决生产者消费者速度匹配问题。
测试:消费者消费速度大于生产者生产速度
1 import threading 2 from threading import Thread , Lock, Event 3 import logging, random 4 import time 5 6 FORMAT = '%(asctime)s %(threadName)s %(thread)d %(message)s' 7 logging.basicConfig(format=FORMAT,level=logging.INFO) 8 9 class Disptcher: 10 def __init__(self): 11 self.data = None 12 self.event = Event() 13 14 def produce(self, total): 15 for _ in range(total): 16 data = random.randint(0, 100) 17 logging.info(data) 18 self.data = data 19 self.event.wait(1) 20 self.event.set() 21 22 def consume(self): 23 while not self.event.is_set(): 24 data = self.data 25 logging.info('recieved {}'.format(data)) 26 self.data = None 27 self.event.wait(0.5) 28 29 d = Disptcher() 30 p = Thread(target=d.produce, args=(10,), name='producer') 31 c = Thread(target=d.consume, name='consumer') 32 33 c.start() 34 p.start()
结果:
1 2018-10-15 10:45:08,751 consumer 7676 recieved None 2 2018-10-15 10:45:08,798 producer 8032 43 3 2018-10-15 10:45:09,303 consumer 7676 recieved 43 4 2018-10-15 10:45:09,824 consumer 7676 recieved None 5 2018-10-15 10:45:09,824 producer 8032 68 6 2018-10-15 10:45:10,339 consumer 7676 recieved 68 7 2018-10-15 10:45:10,838 producer 8032 57 8 2018-10-15 10:45:10,854 consumer 7676 recieved 57 9 2018-10-15 10:45:11,371 consumer 7676 recieved None 10 2018-10-15 10:45:11,854 producer 8032 71 11 2018-10-15 10:45:11,886 consumer 7676 recieved 71 12 2018-10-15 10:45:12,400 consumer 7676 recieved None 13 2018-10-15 10:45:12,868 producer 8032 10 14 2018-10-15 10:45:12,915 consumer 7676 recieved 10 15 2018-10-15 10:45:13,430 consumer 7676 recieved None 16 2018-10-15 10:45:13,882 producer 8032 51 17 2018-10-15 10:45:13,945 consumer 7676 recieved 51 18 2018-10-15 10:45:14,460 consumer 7676 recieved None 19 2018-10-15 10:45:14,896 producer 8032 51 20 2018-10-15 10:45:14,974 consumer 7676 recieved 51 21 2018-10-15 10:45:15,489 consumer 7676 recieved None 22 2018-10-15 10:45:15,910 producer 8032 26 23 2018-10-15 10:45:16,004 consumer 7676 recieved 26 24 2018-10-15 10:45:16,519 consumer 7676 recieved None 25 2018-10-15 10:45:16,924 producer 8032 87 26 2018-10-15 10:45:17,034 consumer 7676 recieved 87 27 2018-10-15 10:45:17,548 consumer 7676 recieved None 28 2018-10-15 10:45:17,938 producer 8032 99 29 2018-10-15 10:45:18,063 consumer 7676 recieved 99 30 2018-10-15 10:45:18,578 consumer 7676 recieved None 31 32 Process finished with exit code 0
从上例可以看出,消费者浪费大量时间来主动查看有没有数据。
测试:使用Condition ,匹配生产者和消费者速度:
1 import threading 2 from threading import Thread , Lock, Event, Condition 3 import logging, random 4 import time 5 6 FORMAT = '%(asctime)s %(threadName)s %(thread)d %(message)s' 7 logging.basicConfig(format=FORMAT,level=logging.INFO) 8 9 class Disptcher: 10 def __init__(self): 11 self.data = None 12 self.event = Event() 13 self.cond = Condition() # 默认是RLock,t 同一线程可以获取多个锁 14 15 def produce(self, total): 16 for _ in range(total): 17 data = random.randint(0, 100) 18 with self.cond: # 获取锁 19 logging.info(data) 20 self.data = data 21 self.cond.notify_all() # 通知所有等待的线程 22 self.event.wait(1) # 模拟产生数据速度 23 24 25 def consume(self): 26 while True: 27 print('==============') 28 with self.cond: 29 self.cond.wait() # 阻塞等待通知 30 logging.info('recieved {}'.format(self.data)) 31 self.data = None 32 self.event.wait(0.5) # 模拟消费速度 33 print('--------------') 34 35 d = Disptcher() 36 p = Thread(target=d.produce, args=(10,), name='producer') 37 c = Thread(target=d.consume, name='consumer') 38 39 c.start() 40 p.start()
结果:可以看到每产生一个数据,就通知一次消费者,最终没有数据产生,消费者一直等待。
1 D:\python3.7\python.exe E:/code_pycharm/复习/t1.py 2 2018-10-15 11:17:25,393 producer 7912 39 3 ============== 4 2018-10-15 11:17:25,393 consumer 4356 recieved 39 5 -------------- 6 ============== 7 2018-10-15 11:17:26,408 producer 7912 78 8 2018-10-15 11:17:26,408 consumer 4356 recieved 78 9 -------------- 10 ============== 11 2018-10-15 11:17:27,422 producer 7912 89 12 2018-10-15 11:17:27,422 consumer 4356 recieved 89 13 -------------- 14 ============== 15 2018-10-15 11:17:28,436 producer 7912 7 16 2018-10-15 11:17:28,436 consumer 4356 recieved 7 17 -------------- 18 ============== 19 2018-10-15 11:17:29,450 producer 7912 7 20 2018-10-15 11:17:29,450 consumer 4356 recieved 7 21 -------------- 22 ============== 23 2018-10-15 11:17:30,464 producer 7912 100 24 2018-10-15 11:17:30,464 consumer 4356 recieved 100 25 -------------- 26 ============== 27 2018-10-15 11:17:31,478 producer 7912 17 28 2018-10-15 11:17:31,478 consumer 4356 recieved 17 29 -------------- 30 ============== 31 2018-10-15 11:17:32,492 producer 7912 12 32 2018-10-15 11:17:32,492 consumer 4356 recieved 12 33 -------------- 34 ============== 35 2018-10-15 11:17:33,506 producer 7912 100 36 2018-10-15 11:17:33,506 consumer 4356 recieved 100 37 -------------- 38 ============== 39 2018-10-15 11:17:34,520 producer 7912 97 40 2018-10-15 11:17:34,520 consumer 4356 recieved 97 41 -------------- 42 ==============
测试:一个生产者,多个消费者,每次只通知两个线程
1 import threading 2 from threading import Thread , Lock, Event, Condition 3 import logging, random 4 import time 5 6 FORMAT = '%(asctime)s %(threadName)s %(thread)d %(message)s' 7 logging.basicConfig(format=FORMAT,level=logging.INFO) 8 9 class Disptcher: 10 def __init__(self): 11 self.data = None 12 self.event = Event() 13 self.cond = Condition() # 默认是RLock,t 同一线程可以获取多个锁 14 15 def produce(self, total): 16 for _ in range(total): 17 data = random.randint(0, 100) 18 with self.cond: # 获取锁 19 logging.info(data) 20 self.data = data 21 self.cond.notify(2) # 通知所有等待的线程 22 self.event.wait(1) # 模拟产生数据速度 23 24 25 def consume(self): 26 while True: 27 # print('==============') 28 with self.cond: 29 self.cond.wait() # 阻塞等待通知 30 logging.info('recieved {}'.format(self.data)) 31 self.data = None 32 self.event.wait(0.5) # 模拟消费速度 33 # print('--------------') 34 35 d = Disptcher() 36 37 p = Thread(target=d.produce, args=(10,), name='producer') 38 39 for i in range(5): 40 c = Thread(target=d.consume, name='consumer --{}'.format(i)) 41 c.start() 42 43 p.start()
结果:可以看到 每次通知的线程都是随机的。
1 D:\python3.7\python.exe E:/code_pycharm/复习/t1.py 2 2018-10-15 11:24:08,780 producer 7220 64 3 2018-10-15 11:24:08,780 consumer --0 7488 recieved 64 4 2018-10-15 11:24:08,780 consumer --1 7556 recieved None 5 2018-10-15 11:24:09,780 producer 7220 65 6 2018-10-15 11:24:09,780 consumer --2 4824 recieved 65 7 2018-10-15 11:24:09,781 consumer --3 7036 recieved None 8 2018-10-15 11:24:10,794 producer 7220 31 9 2018-10-15 11:24:10,794 consumer --4 6256 recieved 31 10 2018-10-15 11:24:10,795 consumer --0 7488 recieved None 11 2018-10-15 11:24:11,809 producer 7220 60 12 2018-10-15 11:24:11,809 consumer --1 7556 recieved 60 13 2018-10-15 11:24:11,809 consumer --2 4824 recieved None 14 2018-10-15 11:24:12,826 producer 7220 44 15 2018-10-15 11:24:12,827 consumer --3 7036 recieved 44 16 2018-10-15 11:24:12,828 consumer --0 7488 recieved None 17 2018-10-15 11:24:13,836 producer 7220 18 18 2018-10-15 11:24:13,836 consumer --2 4824 recieved 18 19 2018-10-15 11:24:13,837 consumer --4 6256 recieved None 20 2018-10-15 11:24:14,850 producer 7220 3 21 2018-10-15 11:24:14,850 consumer --3 7036 recieved 3 22 2018-10-15 11:24:14,851 consumer --1 7556 recieved None 23 2018-10-15 11:24:15,864 producer 7220 33 24 2018-10-15 11:24:15,864 consumer --0 7488 recieved 33 25 2018-10-15 11:24:15,864 consumer --4 6256 recieved None 26 2018-10-15 11:24:16,878 producer 7220 44 27 2018-10-15 11:24:16,878 consumer --2 4824 recieved 44 28 2018-10-15 11:24:16,879 consumer --3 7036 recieved None 29 2018-10-15 11:24:17,892 producer 7220 39 30 2018-10-15 11:24:17,892 consumer --0 7488 recieved 39 31 2018-10-15 11:24:17,892 consumer --1 7556 recieved None
注意:上面的例子只为理解,存在很多瑕疵。
如果一个生产者,多个消费者,若只通知部分线程,就是多播,若都通知,就是广播。
一般消费者在前,避免数据丢失,如果不在意 ,也就无所谓。
正常情况下,消费者速度很慢,对数据做一定处理,所以匹配很难,所以增加消费者来解决。
总结:
Conditon 用于生产者消费者模型中,解决生产者消费者速度匹配问题
采用了通知机制
使用方式:
使用Conditon,必须先acquire,用完了,release,因为内部使用了锁。默认是RLock,最好使用with上下文。
消费者wait,等待通知。
生产者生产好消息,对消费者法通知,可以使用notify或notify_all方法
6、Barrier
叫栅栏,屏障,可以想成路障,道闸 。3.2引入的新功能。
名称 | 含义 |
Barrier(parties, action=None,timeout=None | g构建Barrier对象,指定参与方数目,timeout是wait方法未指定超时的默认值。 |
n_waiting | 当前在屏障中等待的线程数 |
parties | 各方数,就是需要多少个等待 |
wait(timeout=None) | 等待通过屏障,返回0到线程数-1 的整数,每个线程返回不同,如果wait方法设置了超时,并超时发送,屏障将处于broken状态。 |
测试:线程数 小于等于 parties
1 import threading 2 from threading import Thread , Lock, Event, Condition, Barrier 3 import logging, random 4 import time 5 6 FORMAT = '%(asctime)s %(threadName)s %(thread)d %(message)s' 7 logging.basicConfig(format=FORMAT,level=logging.INFO) 8 9 barrier = Barrier(3) 10 11 def worker(bar:Barrier): 12 print(' working', barrier.n_waiting) # bar.n_waiting 13 t = bar.wait() 14 print(t) 15 print('finished---', bar.n_waiting) 16 17 ts = [] 18 for i in range(2): 19 t = Thread(target=worker, args=(barrier,)) 20 t.start() 21 ts.append(t) 22 23 24 while True: 25 time.sleep(1) 26 print(barrier.n_waiting)
结果:
1 working 0 2 working 1 3 2 4 2 5 2 6 2
从上述可以看出,当线程数少于 parties的时候,n_waitin 是当前线程数,在等待。
而刚启动第一个线程的时候,此时n_waiting = 0,还没有一个线程在等待,因为等执行完wait后,在知道有一个在等待。
所以,当线程数为2 的时候,n_waiting = 1,但是在主线程中,n_waiting = 2,因为当两个线程都处于wait时,主线程发现有两个哎等待,如果没有sleep(1),主线程中可能也会出现0 或 1.
测试:如果出现abort,即损坏,需要异常处理来解决,正常的线程还是会继续执行
1 import threading 2 from threading import Thread , Lock, Event, Condition, Barrier 3 import logging, random 4 import time 5 6 FORMAT = '%(asctime)s %(threadName)s %(thread)d %(message)s' 7 logging.basicConfig(format=FORMAT,level=logging.INFO) 8 9 barrier = Barrier(3) 10 11 def worker(bar:Barrier): 12 print(' working', barrier.n_waiting) # bar.n_waiting 13 try: 14 bar.wait() 15 except threading.BrokenBarrierError: 16 print('broken') 17 print('finished---', bar.n_waiting) 18 19 ts = [] 20 for i in range(3): 21 if i == 2: 22 barrier.abort() 23 # if i == 4: 24 # barrier.reset() 25 t = Thread(target=worker, args=(barrier,)) 26 t.start() 27 ts.append(t) 28 29 30 while True: 31 time.sleep(2) 32 print(barrier.n_waiting, barrier.broken)
结果:从结果可看到 0,1线程也都完成了
1 working 0 2 working broken0 working 0 3 broken 4 broken 5 finished--- 0 6 7 8 finished---finished--- 0 9 0 10 0 True 11 0 True 12 0 True 13 14 Process finished with exit code 1
测试:通过异常处理来解决abrot ---> broken
1 import threading 2 from threading import Thread , Lock, Event, Condition, Barrier 3 import logging, random 4 import time 5 6 FORMAT = '%(asctime)s %(threadName)s %(thread)d %(message)s' 7 logging.basicConfig(format=FORMAT,level=logging.INFO) 8 9 barrier = Barrier(3) 10 11 def worker(bar:Barrier): 12 print(' working', barrier.n_waiting) # bar.n_waiting 13 try: 14 bar.wait() 15 except threading.BrokenBarrierError: 16 print('broken') 17 print('finished---', bar.n_waiting) 18 19 ts = [] 20 for i in range(7): 21 if i == 2: 22 barrier.abort() 23 if i == 4: 24 barrier.reset() 25 t = Thread(target=worker, args=(barrier,)) 26 t.start() 27 ts.append(t) 28 29 30 while True: 31 time.sleep(0.5) 32 print(barrier.n_waiting, barrier.broken)
结果:测试发现,只要线程是3 的倍数,即便abort了,也就是损坏了,还是可以往下执行
1 D:\python3.7\python.exe E:/code_pycharm/复习/t2.py 2 working 0 3 working 1 4 broken working 5 finished--- 0 6 brokenbroken 7 finished--- 0 8 0 9 working 0 10 11 working 1 12 finished--- 2 13 working 2 14 finished--- 0 15 finished--- 0 16 working 0 17 finished--- 0 18 1 False 19 1 False 20 1 False 21 1 False 22 1 False 23 1 False 24 1 False 25 26 Process finished with exit code 1
测试:如果wait超时,就会将barrier broken,而且一直处于broken,除非reset,也就是说,如果broken后,即便线程数不是partes的整数倍,都会往下走,不会处于等待,也就是说,来一个线程,不等,直接往下走。如下测试2
没有broken之前正常等待,出现broken之后,就不用再等,直接执行后面的代码,直到修复
1 import threading 2 from threading import Thread , Lock, Event, Condition, Barrier 3 import logging, random 4 import time 5 6 FORMAT = '%(asctime)s %(threadName)s %(thread)d %(message)s' 7 logging.basicConfig(format=FORMAT,level=logging.INFO) 8 9 barrier = Barrier(3) 10 11 def worker(bar:Barrier): 12 print(' working', barrier.n_waiting) # bar.n_waiting 13 try: 14 bar.wait(1) 15 except threading.BrokenBarrierError: 16 print('broken') 17 print('finished---', bar.n_waiting) 18 19 ts = [] 20 for i in range(6): 21 t = Thread(target=worker, args=(barrier,)) 22 t.start() 23 time.sleep(1) 24 ts.append(t) 25 26 27 while True: 28 time.sleep(0.5) 29 print(barrier.n_waiting, barrier.broken)
结果:
1 D:\python3.7\python.exe E:/code_pycharm/复习/t2.py 2 working 0 3 working 1 4 broken 5 broken 6 finished--- 0finished--- 0 7 8 working 0 9 broken 10 finished--- 0 11 working 0 12 broken 13 finished--- 0 14 working 0 15 broken 16 finished--- 0 17 working 0 18 broken 19 finished--- 0 20 0 True 21 0 True 22 0 True 23 0 True 24 0 True
手动reset()
测试2:
1 import threading 2 from threading import Thread , Lock, Event, Condition, Barrier 3 import logging, random 4 import time 5 6 FORMAT = '%(asctime)s %(threadName)s %(thread)d %(message)s' 7 logging.basicConfig(format=FORMAT,level=logging.INFO) 8 9 barrier = Barrier(3) 10 11 def worker(bar:Barrier): 12 print(' working', barrier.n_waiting) # bar.n_waiting 13 try: 14 bar.wait(1) 15 except threading.BrokenBarrierError: 16 print('broken') 17 print('finished---', bar.n_waiting) 18 19 ts = [] 20 for i in range(6): 21 t = Thread(target=worker, args=(barrier,)) 22 t.start() 23 time.sleep(1) 24 ts.append(t) 25 26 time.sleep(3) 27 print('--------------------------------------------------') 28 29 for _ in range(3): 30 tt = threading.Thread(target=worker,args=(barrier,)) 31 tt.start() 32 33 34 while True: 35 time.sleep(0.5) 36 print(barrier.n_waiting, barrier.broken)
结果:
1 D:\python3.7\python.exe E:/code_pycharm/复习/t2.py 2 working 0 3 working 1 4 broken 5 finished--- 0 6 broken 7 finished--- 0 8 working 0 9 broken 10 finished--- 0 11 working 0 12 broken 13 finished--- 0 14 working 0 15 broken 16 finished--- 0 17 working 0 18 broken 19 finished--- 0 20 -------------------------------------------------- 21 working 0 22 broken 23 finished--- 0 24 working 0 25 broken 26 finished--- 0 27 working 0 28 broken 29 finished--- 0 30 0 True 31 0 True 32 0 True 33 0 True 34 0 True 35 0 True 36 0 True 37 38 Process finished with exit code 1
Barrier应用:
并发初始化:
所有线程都必须初始化完成后,才能继续工作,例如运行前加载数据,检查,如果这些工作没有完成就开始运行,将不能正常进行。
10个线程做10种工作准备,每个线程负责一种工作,只有这10个线程完成后,才能继续工作,先完成的要等待后完成的线程。
例如:启动一个程序,需要先加载磁盘文件,缓存预热,初始化里链接池等工作,这些工作可以齐头并进,不过只有都满足了,成序才能继续向后执行。假设数据库链接失败,则初始化工作失败,就要abort,barrier置为broken,所有线程收到异常退出。
工作量:
有10个计算任务,完成6 个,就算完成工作。
7、semaphore 信号量
和 Lock很像,信号量对象内部维护一个倒计数器,每一次acquire都会减1,当acquire方法发现技术为0 就阻塞请求的线程,直到其他线程对信号量release后,计数大于 0,恢复阻塞的线程。
名称 | 含义 |
Semaphore(value=1) | 构造方法,value小于0,抛ValueError异常 |
acquire(blocking=True, timeout=None) | 获取信号量,计数器减一,获取成功返回True |
release() | 释放信号量,计数器加1 |
计数器永远不会低于0,因为acquire的时候,发现是0,都会被阻塞
测试1:
1 import threading 2 from threading import Thread , Lock, Event, Condition, Semaphore 3 import logging, random 4 import time 5 6 FORMAT = '%(asctime)s %(threadName)s %(thread)d %(message)s' 7 logging.basicConfig(format=FORMAT,level=logging.INFO) 8 9 s = Semaphore(3) 10 11 print(s._value) 12 13 print(s.acquire()) 14 print(s.acquire()) 15 print(s._value) 16 17 Thread(target=lambda s:s.acquire(), args=(s,)).start() 18 time.sleep(2) 19 print(s._value) 20 21 s.release() 22 s.release() 23 s.release() 24 s.release() 25 s.release() 26 27 print('=========== end ==============') 28 29 print(s._value)
结果:可以看到release 超过了value后,在看_value的值,就变了, 所以一般用带边界的信号量、
1 D:\python3.7\python.exe E:/code_pycharm/复习/t1.py 2 3 3 True 4 True 5 1 6 0 7 =========== end ============== 8 5 9 10 Process finished with exit code 0
在BoundedSemaphore 下,如果没有acquire信号量的时候,就release,就会报错
BoundedSemaphore类:
有界的信号量,不允许使用release查出初始化的范围,否则ValueError
应用举例:
连接池:因为资源有限,且开启一个连接成本高,所以使用连接池。
一个简单的链接池:
链接池应该有容量(总数),有一个工厂方法可以获取链接,能够把不用的链接返回,供其他调用者使用。
测试: 此代码是用来演示,并不能用于生产
1 import threading 2 from threading import Thread , Lock, Event, Condition, Semaphore,BoundedSemaphore 3 import logging, random 4 import time 5 6 FORMAT = '%(asctime)s %(threadName)s %(thread)d %(message)s' 7 logging.basicConfig(format=FORMAT,level=logging.INFO) 8 9 class Conn: 10 def __init__(self, name): 11 self.name = name 12 13 class Pool: 14 def __init__(self, count:int): 15 self.count = count 16 self.pool = [self.__connect('conn - {}'.format(x)) for x in range(self.count)] 17 self.semaphore = Semaphore(count) 18 19 20 def _connect(self, conn_name): 21 return Conn(conn_name) 22 23 def get_conn(self): 24 print('------------------') 25 self.semaphore.acquire() 26 print('===================') 27 conn = self.pool.pop() 28 return conn 29 30 def return_conn(self,conn:Conn): 31 self.pool.append(conn) 32 self.semaphore.release() 33 34 pool = Pool(3) 35 36 def worer(pool:Pool): 37 conn = pool.get_conn() 38 logging.info(conn) 39 40 threading.Event().wait(random.randint(1, 4)) 41 pool.return_conn(conn) 42 43 for i in range(6): 44 threading.Thread(target=worer, name='w --{}'.format(i), args=(pool,)).start()
信号量和锁:
锁,只允许同一个时间一个线程独占资源,它是特殊的信号量,即信号量计数器初始值为 1
信号量,可以多个线程访问共享资源,但是这个共享资源是有限的。
锁,可以看做特殊的信号量。
8、数据结构 和 GIL:
Queue是线程安全的,到目前为止。
因为 if语句 执行 和put 、get执行,中间,其他线程也插进来
GIL 全局解释器锁:
第一段话的意思就是说:如果多线程的时候,每个线程分配到不同的cpu核心上,但是,还是同一时间只有一个线程执行字节码。
IO密集型:比如print,会调用os模块下的stdout,这个时间,就会有其他线程深入执行。
事实上,通过测试一个cpu密集型的代码,CPython多线程是没有任何优势的。和一个线程执行时间相当。因为GIL存在,
事实上,python支持使用单线程,因为里边有一个协程。效率也不亚于多进程
所以多线程,相当于串行执行,因为GIL ,每次只能执行一个线程代码,只不过时间片不一样。
墙上时间(手表看的时间)
5个100那块 再看一次,什么时候不会出现500 多线程-锁: 共享锁,排他锁,锁力度 线程相关:lock Rlock 一般来说消费者先启动。避免数据丢失 condition: 生产速度 匹配消费速度 一份数据多人使用 广播策略 多播策略 复习:正则出现的 切片 Barrier: Bounded 边界 一个资源 lock 多个有限资源 信号量 with不能夸函数 Queue代码中 互斥量!!! 内置数据结构本身不是线程安全的。在GIL下,安全,仅在CPython