<tensorflow实战>之5.3实现进阶的卷积网咯

环境:tensorflow最新版  可在现有tensorflow基础上使用 pip install --upgrade tensorflow-gpu

然后下载 cudnn6.0 : https://developer.nvidia.com/rdp/cudnn-archive,并将三个文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0对应的三个文件夹

之后在cmd环境中import tensorflow 发现无误之后进行下面的操作

首先需要按照书上第85页要求:下载tensorflow model 库,

git clone https://github.com/tensorflow/models.git
cd models/tutorials/image/cifar10

然后会出现一个models的文件夹,将models文件夹下的 cifar10.py和cifar10_input.py拷贝到与5_3_CNN_CIFAR10.py一样的文件夹下

更改5_3_CNN_CIFAR10.py中的

data_dir = './cifar10_data/cifar-10-batches-bin'

运行5_3_CNN_CIFAR10.py并将下载下来的cifar-10-batches-bin文件拷贝到cifar-10-batches-bin文件夹下【可能需要搜索,才能找到文件下载的地方】

然后执行

#%%
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
#import os
import tensorflow as tf
import cifar10
import cifar10_input
import numpy as np
import time

max_steps = 3000
batch_size = 128
data_dir = './cifar10_data/cifar-10-batches-bin'


def variable_with_weight_loss(shape, stddev, wl):
    var = tf.Variable(tf.truncated_normal(shape, stddev=stddev))
    if wl is not None:
        weight_loss = tf.multiply(tf.nn.l2_loss(var), wl, name='weight_loss')
        tf.add_to_collection('losses', weight_loss)   # 把变量放入一个集合,把很多变量变成一个列表
    return var


def loss(logits, labels):
#      """Add L2Loss to all the trainable variables.
#      Add summary for "Loss" and "Loss/avg".
#      Args:
#        logits: Logits from inference().
#        labels: Labels from distorted_inputs or inputs(). 1-D tensor
#                of shape [batch_size]
#      Returns:
#        Loss tensor of type float.
#      """
#      # Calculate the average cross entropy loss across the batch.
    labels = tf.cast(labels, tf.int64)   # 类型转换说
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits=logits, labels=labels, name='cross_entropy_per_example')    # 稀疏化的类别标签
    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
    tf.add_to_collection('losses', cross_entropy_mean)

  # The total loss is defined as the cross entropy loss plus all of the weight
  # decay terms (L2 loss).
    return tf.add_n(tf.get_collection('losses'), name='total_loss')  # 从一个结合中取出全部变量tf.get_collection,tf.add_n把一个列表的东西都依次加起来
  
###

cifar10.maybe_download_and_extract()


images_train, labels_train = cifar10_input.distorted_inputs(data_dir=data_dir,
                                                            batch_size=batch_size)

images_test, labels_test = cifar10_input.inputs(eval_data=True,
                                                data_dir=data_dir,
                                                batch_size=batch_size)                                                  
#images_train, labels_train = cifar10.distorted_inputs()
#images_test, labels_test = cifar10.inputs(eval_data=True)

image_holder = tf.placeholder(tf.float32, [batch_size, 24, 24, 3])
label_holder = tf.placeholder(tf.int32, [batch_size])

#logits = inference(image_holder)

weight1 = variable_with_weight_loss(shape=[5, 5, 3, 64], stddev=5e-2, wl=0.0)  # wl=0.0表示不对卷积层的weight进行正则化
kernel1 = tf.nn.conv2d(image_holder, weight1, [1, 1, 1, 1], padding='SAME')  # 卷积图
bias1 = tf.Variable(tf.constant(0.0, shape=[64]))               # 卷积层的bias初始化为0
conv1 = tf.nn.relu(tf.nn.bias_add(kernel1, bias1))
pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
                       padding='SAME')
norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)  # 对卷积结果进行LRN处理


weight2 = variable_with_weight_loss(shape=[5, 5, 64, 64], stddev=5e-2, wl=0.0)   # 第二个卷积层
kernel2 = tf.nn.conv2d(norm1, weight2, [1, 1, 1, 1], padding='SAME')
bias2 = tf.Variable(tf.constant(0.1, shape=[64]))
conv2 = tf.nn.relu(tf.nn.bias_add(kernel2, bias2))
norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)
pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
                       padding='SAME')

reshape = tf.reshape(pool2, [batch_size, -1])   # 全连接层
dim = reshape.get_shape()[1].value
weight3 = variable_with_weight_loss(shape=[dim, 384], stddev=0.04, wl=0.004)   # 384为隐含节点数  对这种全连接层的权重进行正则化
bias3 = tf.Variable(tf.constant(0.1, shape=[384]))
local3 = tf.nn.relu(tf.matmul(reshape, weight3) + bias3)

weight4 = variable_with_weight_loss(shape=[384, 192], stddev=0.04, wl=0.004)  # 192也是隐含节点数
bias4 = tf.Variable(tf.constant(0.1, shape=[192]))                                      
local4 = tf.nn.relu(tf.matmul(local3, weight4) + bias4)

weight5 = variable_with_weight_loss(shape=[192, 10], stddev=1/192.0, wl=0.0)
bias5 = tf.Variable(tf.constant(0.0, shape=[10]))
logits = tf.add(tf.matmul(local4, weight5), bias5)             # 预测的标签

loss = loss(logits, label_holder)


train_op = tf.train.AdamOptimizer(1e-3).minimize(loss) #0.72

top_k_op = tf.nn.in_top_k(logits, label_holder, 1) # 求输出结果中top k的准确率,默认是top 1,也就是输出分数最高的那一类的准确率

sess = tf.InteractiveSession()      # 创建默认的session
tf.global_variables_initializer().run()   # 初始化全部模型参数

tf.train.start_queue_runners()   # 启动前面提到的图片数据增强的线程队列
###
for step in range(max_steps):
    start_time = time.time()
    image_batch,label_batch = sess.run([images_train,labels_train])   # 获得一个batch的数据
    loss_value = sess.run([train_op, loss],feed_dict={image_holder: image_batch, 
                                                         label_holder:label_batch})
    duration = time.time() - start_time         # 记录每一个step花费的时间

    if step % 10 == 0:
        examples_per_sec = batch_size / duration
        sec_per_batch = float(duration)
    
        format_str = ('step %d, loss = %.2f (%.1f examples/sec; %.3f sec/batch)')
        print(format_str % (step, loss_value[1], examples_per_sec, sec_per_batch))
    
###  测试评测
num_examples = 10000
import math
num_iter = int(math.ceil(num_examples / batch_size))
true_count = 0  
total_sample_count = num_iter * batch_size
step = 0
while step < num_iter:
    image_batch,label_batch = sess.run([images_test,labels_test])
    predictions = sess.run([top_k_op],feed_dict={image_holder: image_batch,
                                                 label_holder:label_batch})
    true_count += np.sum(predictions)
    step += 1

precision = true_count / total_sample_count
print('precision @ 1 = %.3f' % precision)

但是还是报错,很尴尬。。。 

posted @ 2017-12-19 17:12  邪恶的亡灵  阅读(493)  评论(0编辑  收藏  举报