tensorflow学习之softmax regression
电脑配置:win10 + Anaconda3 + pyton3.5 + vs2013 + tensorflow + Gpu980 + matlab2016b
softmax regression的详细介绍,请参考黄文坚的《tensorflow实战》的第3.2节。
原书pdf下载地址: 链接:https://pan.baidu.com/s/1sk8Qm4X 密码:28jk
原书code下载地址:链接:https://pan.baidu.com/s/1eR1LepW 密码:kmiz
我这里的贡献,主要将代码改写为能够直接调用我们matlab的数据集,比如COIL20数据集
其中读取数据在matlab,训练和识别在python
数据集读写代码如下:
function output = data_imread_MSE(name,sele_num) % 用于 tensorflow下的 3.2节 softmax regression的数据读取 % 数据存储为细胞组形式,4个元祖分别为 训练矩阵,训练标签,测试矩阵,测试标签 % 其中 训练矩阵和测试矩阵都是一行一个样本 % 测试标签为 MSE的one-hot矩阵 一行只有一个元素为1 一行为一个样本的类标 addpath('H:\2015629房师兄代码\data set'); load (name); fea = double(fea); nnClass = length(unique(gnd)); % The number of classes; num_Class = []; for i = 1:nnClass num_Class = [num_Class length(find(gnd==i))]; %The number of samples of each class end %%------------------select training samples and test samples--------------%% Train_Ma = []; Train_Lab = []; Test_Ma = []; Test_Lab = []; for j = 1:nnClass idx = find(gnd==j); randIdx = randperm(num_Class(j)); Train_Ma = [Train_Ma; fea(idx(randIdx(1:sele_num)),:)]; % select select_num samples per class for training Train_Lab= [Train_Lab;gnd(idx(randIdx(1:sele_num)))]; Test_Ma = [Test_Ma;fea(idx(randIdx(sele_num+1:num_Class(j))),:)]; % select remaining samples per class for test Test_Lab = [Test_Lab;gnd(idx(randIdx(sele_num+1:num_Class(j))))]; end Train_Ma = Train_Ma'; % transform to a sample per column Train_Ma = Train_Ma./repmat(sqrt(sum(Train_Ma.^2)),[size(Train_Ma,1) 1]); Test_Ma = Test_Ma'; Test_Ma = Test_Ma./repmat(sqrt(sum(Test_Ma.^2)),[size(Test_Ma,1) 1]); % ------------- label = unique(Train_Lab); Train_Lab = bsxfun(@eq, Train_Lab, label'); label = unique(Test_Lab); Test_Lab = bsxfun(@eq, Test_Lab, label'); output = cell(1,4); output{1} = Train_Ma'; output{2} = Train_Lab; output{3} = Test_Ma'; output{4} = Test_Lab; end
其中softmax regression主函数如下:
# -*- coding: utf-8 -*- """ Created on Wed Dec 13 20:25:47 2017 @author: Administrator """ #%% # Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # 用matlab读取数据 data_name = 'COIL20.mat' sele_num = 4 import matlab.engine eng = matlab.engine.start_matlab() t = eng.data_imread_MSE(data_name,sele_num) eng.quit() #t = np.array(t) Train_Ma = np.array(t[0]).astype(np.float32) Train_Lab = np.array(t[1]).astype(np.int8) Test_Ma = np.array(t[2]).astype(np.float32) Test_Lab = np.array(t[3]).astype(np.int8) Num_fea = Train_Ma.shape[1] Num_Class = Train_Lab.shape[1] import tensorflow as tf sess = tf.InteractiveSession() x = tf.placeholder(tf.float32, [None, Num_fea]) W = tf.Variable(tf.zeros([Num_fea, Num_Class])) b = tf.Variable(tf.zeros([Num_Class])) y = tf.nn.softmax(tf.matmul(x, W) + b) y_ = tf.placeholder(tf.float32, [None, Num_Class]) cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) train_step = tf.train.GradientDescentOptimizer(0.2).minimize(cross_entropy) tf.global_variables_initializer().run() for i in range(500): batch_xs = Train_Ma batch_ys = Train_Lab train_step.run({x: batch_xs, y_: batch_ys}) correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print(accuracy.eval({x: Test_Ma, y_: Test_Lab}))
识别结果如下
针对COIL20数据集,随机选取每类4个样本作为训练样本,余下为测试样本
当迭代次数为500时,选取不同的learning_rate时的对比
learnng_rate=0.2 | 0.5 | 0.8 | 1 | 5 | 10 |
69.71 | 72.43 | 73.38 | 73.60 | 74.85 | 75.15 |
当learning_rate为10时,选取
iter_num=100 | 500 | 1000 | 2000 | 3000 |
74.34 | 75.15 | 75.15 | 75.44 | 75.37 |
选取10个样本时的识别率大约为84.11,这与LRLR等传统方法的结果是差不多的。
本文代码下载链接如下:
链接:https://pan.baidu.com/s/1dFvXInB 密码:z2s6
当然,咱也可以用传统回归的损失函数:min |Y-WX| + lambda*|W|
regu = 0.01
cross_entropy = tf.reduce_sum(tf.multiply(y_-y,y_-y))+tf.reduce_sum(tf.multiply(W,W))*regu
当lambda=0.01,learning_rate=0.2,迭代次数为100时,也能得到82.02的识别率