【数论】【矩阵加速】[POJ3070]Fibonacci
题目描述
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
1, 1, 2, 3, 5, 8, 13, 21, 34, …
样例输入
0
9
999999999
1000000000
-1
样例输出
0
34
626
6875
题目分析
首先我们可以发现Fib的定义为
代码
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
const int MAXN = 5;
const int MOD = 10000;
struct Matrix {
int Ma[MAXN+10][MAXN+10], n, m;
void Clear(int u, int un=0, int um=0){
n = un, m = um;
for(int i=1;i<=un;i++)
for(int j=1;j<=um;j++)
Ma[i][j] = 0;
if(u) for(int i=1;i<=un;i++)
Ma[i][i] = 1;
}
Matrix operator* (const Matrix& ma) {
Matrix ret ;
ret.Clear(0, n, m);
for(int i=1;i<=n;i++){
for(int j=1;j<=ma.m;j++){
for(int k=1;k<=ma.n;k++){
ret.Ma[i][j] += Ma[i][k] * ma.Ma[k][j];
ret.Ma[i][j] %= MOD;
}
}
}
return ret;
}
};
Matrix Mpow(Matrix m, int p){
Matrix ret;
if(p == 0){
ret.Clear(1, 2, 2);
return ret;
}else if(p == 1) return m;
ret = Mpow(m, p/2);
if(p%2 == 0) return ret * ret;
return (ret * ret) * m;
}
int main(){
int n;
while(scanf("%d", &n) && ~n ){
Matrix m;
m.Clear(0, 2, 2);
m.Ma[1][1] = 1;
m.Ma[2][1] = 1;
m.Ma[1][2] = 1;
Matrix ans = Mpow(m, n);
printf("%d\n", ans.Ma[1][2]);
}
return 0;
}