k Nearest Neighbor Search by CUDA

kNN(k Nearest Neighbor)是常用的群集算法(Cluster Algorithm)用于空间搜索。目前最快的kNN方法莫过于KDTree的版本,不过基本上都是CPU的比如ANN C++ Library。对于GPU来说,实现加速结构比较复杂,因为没有栈所以无法递归,而且执行资源有限,不能像CPU一样舒舒服服的顺序执行。

为了方便起见我直接用komrade粘合C++与CUDA,下面是测试程序的代码。 

#include <komrade/device_vector.h>
#include 
<komrade/transform.h>
#include 
<komrade/range.h>
#include 
<komrade/copy.h>
#include 
<komrade/fill.h>
#include 
<komrade/sort.h>
#include 
<komrade/replace.h>
#include 
<komrade/functional.h>
#include 
<iostream>
#include 
<iterator>
#include 
<math.h>
#include 
<memory>
#include 
<boost/timer.hpp>

using namespace std;

#include 
<ANN/ANN.h>
#pragma comment(lib,"ANN.lib")

struct dist
{
    dist(
float qx, float qy, float qz) : x(qx), y(qy), z(qz)
    {
    }
    
float x,y,z;
    
    __host__ __device__ 
float operator()(const float3& p) const
    {
        
float a = p.x - x;
        
float b = p.y - y;
        
float c = p.z - z;
        
return a*+ b*+ c*c;
    }
};

int main(int argc, char* argv[])
{
    
if( argc < 2 )
        
return -1;
            
    
int N = 0;
    sscanf(argv[
1],"%d",&N);
    
    boost::timer Stopwatch;
    ANNpointArray ANNPh 
= annAllocPts(N,3);
    komrade::host_vector
<float3> Ph(N);
    komrade::device_vector
<int> Idx(N);
    komrade::device_vector
<float> Dist(N);
    
    
    
for(int i=0; i<N; ++i)
    {
        
float x = (float)rand() / (float)RAND_MAX;;
        
float y = (float)rand() / (float)RAND_MAX;;
        
float z = (float)rand() / (float)RAND_MAX;;
        
        Ph[i].x 
= x;
        Ph[i].y 
= y;
        Ph[i].z 
= z;
        
        ANNPh[i][
0= x;
        ANNPh[i][
1= y;
        ANNPh[i][
2= z;
                
        
if( N < 32 )
            printf(
"<%f %f %f>\n",x,y,z);
        Idx[i] 
= i;
    }
    cout
<<fixed<<"Generate Data Used "<<Stopwatch.elapsed()<<endl;
    Stopwatch.restart();
        
    
float QueryPos[3];
    QueryPos[
0= (float)rand() / (float)RAND_MAX * 0.1f + 0.5f;
    QueryPos[
1= (float)rand() / (float)RAND_MAX * 0.1f + 0.5f;
    QueryPos[
2= (float)rand() / (float)RAND_MAX * 0.1f + 0.5f;
    
if( N < 32 )
        printf(
"[%f %f %f]\n",QueryPos[0],QueryPos[1],QueryPos[2]);
        
    komrade::device_vector
<float3> Pd = Ph;
    cout
<<fixed<<"Copy Data Used "<<Stopwatch.elapsed()<<endl;
    Stopwatch.restart();
    
    komrade::transform(Pd.begin(), Pd.end(), Dist.begin(), dist(QueryPos[
0], QueryPos[1], QueryPos[2]));
    komrade::sort_by_key(Dist.begin(), Dist.end(), Idx.begin());
    cout
<<fixed<<"Sort Data by CUDA Used "<<Stopwatch.elapsed()<<endl;
    Stopwatch.restart();
    
    ANNkd_tree ANNTree(ANNPh,N,
3);
    ANNidx ANNIdx[
1];
    ANNdist ANNDst[
1];
    ANNTree.annkSearch(QueryPos,
1,ANNIdx,ANNDst);
    cout
<<fixed<<"Sort Data by ANN Used "<<Stopwatch.elapsed()<<endl;

    
    
if( N < 32 )
    {
        copy(Dist.begin(), Dist.end(), ostream_iterator
<float>(cout," "));
        cout
<<endl;
        copy(Idx.begin(), Idx.end(), ostream_iterator
<int>(cout," "));
    }
    
    
    
return 0;
}

下面是性能分析对比,可以看到CUDA版本在大量点的情况下还是非常有优势的,不过在纯RenderFarm就用不上了,恐怕只能在装备有G80以上芯片的桌面环境或者工作站上执行。测试环境如下,

  • Intel E5200@2.9G
  • Apacer 2Gx2
  • 9800GT 512M
  • CUDA 2.2, komrade 0.9
  10 100 1000 10000 100000 1000000
CUDA 0.003 0.003 0.00300 0.007 0.012 0.038
ANN 0.000 0.000 0.00100 0.008 0.131 2.490

CUDAKNN

极其明显的,当排序数目数量级超过10e5的时候,CUDA显示出了巨大的速度优势。数目比较少的时候还是CPU的比较快速。

启发自《Fast k Nearest Neighbor Search using GPU

posted on 2009-06-07 11:14  Bo Schwarzstein  阅读(4278)  评论(8编辑  收藏  举报