【老王公众号】

机器学习四大分类

      机器学习分为四大块,分别是classification (分类),regression (回归), clustering (聚类), dimensionality reduction (降维)。

  • 聚类(clustering)

    无监督学习的结果。聚类的结果将产生一组集合,集合中的对象与同集合中的对象彼此相似,与其他集合中的对象相异。

    没有标准参考的学生给书本分的类别,表示自己认为这些书可能是同一类别的(具体什么类别不知道,没有标签和目标,即不是判断书的好坏(目标,标签),只能凭借特征而分类)。

  • 分类(classification)

    有监督学习的两大应用之一,产生离散的结果。

    例如向模型输入人的各种数据的训练样本,产生“输入一个人的数据,判断是否患有癌症”的结果,结果必定是离散的,只有“是”或“否”。(即有目标和标签,能判断目标特征是属于哪一个类型)

  • 回归(regression)

    有监督学习的两大应用之一,产生连续的结果。

    例如向模型输入人的各种数据的训练样本,产生“输入一个人的数据,判断此人20年后今后的经济能力”的结果,结果是连续的,往往得到一条回归曲线。当输入自变量不同时,输出的因变量非离散分布(不仅仅是一条线性直线,多项曲线也是回归曲线)。

  •  

    1,给定一个样本特征 , 我们希望预测其对应的属性值 , 如果  是离散的, 那么这就是一个分类问题,反之,如果  是连续的实数, 这就是一个回归问题。

    2,如果给定一组样本特征 , 我们没有对应的属性值 , 而是想发掘这组样本在 二维空间的分布, 比如分析哪些样本靠的更近,哪些样本之间离得很远, 这就是属于聚类问题。

    3,如果我们想用维数更低的子空间来表示原来高维的特征空间, 那么这就是降维问题。

posted @   CTO老王  阅读(3707)  评论(0编辑  收藏  举报
编辑推荐:
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
阅读排行:
· 地球OL攻略 —— 某应届生求职总结
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 提示词工程——AI应用必不可少的技术
· .NET周刊【3月第1期 2025-03-02】
历史上的今天:
2014-03-28 接口测试中三种传参请求(Map、request、Integer)解析
点击右上角即可分享
微信分享提示