力扣链表 哈希表 之 146. LRU 缓存
请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现
LRUCache
类:LRUCache(int capacity)
以 正整数 作为容量capacity
初始化 LRU 缓存int get(int key)
如果关键字key
存在于缓存中,则返回关键字的值,否则返回-1
。void put(int key, int value)
如果关键字key
已经存在,则变更其数据值value
;如果不存在,则向缓存中插入该组key-value
。如果插入操作导致关键字数量超过capacity
,则应该 逐出 最久未使用的关键字。
函数 get
和 put
必须以 O(1)
的平均时间复杂度运行。
示例:
输入 ["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"] [[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]] 输出 [null, null, null, 1, null, -1, null, -1, 3, 4] 解释 LRUCache lRUCache = new LRUCache(2); lRUCache.put(1, 1); // 缓存是 {1=1} lRUCache.put(2, 2); // 缓存是 {1=1, 2=2} lRUCache.get(1); // 返回 1 lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3} lRUCache.get(2); // 返回 -1 (未找到) lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3} lRUCache.get(1); // 返回 -1 (未找到) lRUCache.get(3); // 返回 3 lRUCache.get(4); // 返回 4
Java 原生linkedHashMap
class LRUCache { int cap; LinkedHashMap<Integer, Integer> cache = new LinkedHashMap<>(); public LRUCache(int capacity) { this.cap = capacity; } public int get(int key) { if (!cache.containsKey(key)) { return -1; } // 将 key 变为最近使用 makeRecently(key); return cache.get(key); } public void put(int key, int val) { if (cache.containsKey(key)) { // 修改 key 的值 cache.put(key, val); // 将 key 变为最近使用 makeRecently(key); return; } if (cache.size() >= this.cap) { // 链表头部就是最久未使用的 key int oldestKey = cache.keySet().iterator().next(); cache.remove(oldestKey); } // 将新的 key 添加链表尾部 cache.put(key, val); } private void makeRecently(int key) { int val = cache.get(key); // 删除 key,重新插入到队尾 cache.remove(key); cache.put(key, val); } } 作者:labuladong 链接:https://leetcode.cn/problems/lru-cache/solutions/12711/lru-ce-lue-xiang-jie-he-shi-xian-by-labuladong/ 来源:力扣(LeetCode) 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
class LRUCache extends LinkedHashMap<Integer, Integer>{
private int capacity;
public LRUCache(int capacity) {
super(capacity, 0.75F, true);
this.capacity = capacity;
}
public int get(int key) {
return super.getOrDefault(key, -1);
}
public void put(int key, int value) {
super.put(key, value);
}
@Override
protected boolean removeEldestEntry(Map.Entry<Integer, Integer> eldest) {
return size() > capacity;
}
}
Java 原生linkedHashMap
class LRUCache { int cap; LinkedHashMap<Integer, Integer> cache = new LinkedHashMap<>(); public LRUCache(int capacity) { this.cap = capacity; } public int get(int key) { if (!cache.containsKey(key)) { return -1; } // 将 key 变为最近使用 makeRecently(key); return cache.get(key); } public void put(int key, int val) { if (cache.containsKey(key)) { // 修改 key 的值 cache.put(key, val); // 将 key 变为最近使用 makeRecently(key); return; } if (cache.size() >= this.cap) { // 链表头部就是最久未使用的 key int oldestKey = cache.keySet().iterator().next(); cache.remove(oldestKey); } // 将新的 key 添加链表尾部 cache.put(key, val); } private void makeRecently(int key) { int val = cache.get(key); // 删除 key,重新插入到队尾 cache.remove(key); cache.put(key, val); } } 作者:labuladong 链接:https://leetcode.cn/problems/lru-cache/solutions/12711/lru-ce-lue-xiang-jie-he-shi-xian-by-labuladong/ 来源:力扣(LeetCode) 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
class LRUCache {
int cap;
LinkedHashMap<Integer, Integer> cache = new LinkedHashMap<>();
public LRUCache(int capacity) {
this.cap = capacity;
}
public int get(int key) {
if (!cache.containsKey(key)) {
return -1;
}
// 将 key 变为最近使用
makeRecently(key);
return cache.get(key);
}
public void put(int key, int val) {
if (cache.containsKey(key)) {
// 修改 key 的值
cache.put(key, val);
// 将 key 变为最近使用
makeRecently(key);
return;
}
if (cache.size() >= this.cap) {
// 链表头部就是最久未使用的 key
int oldestKey = cache.keySet().iterator().next();
cache.remove(oldestKey);
}
// 将新的 key 添加链表尾部
cache.put(key, val);
}
private void makeRecently(int key) {
int val = cache.get(key);
// 删除 key,重新插入到队尾
cache.remove(key);
cache.put(key, val);
}
}
hashmap + linkedlist;
哈希表+linkedlist 双向链表,半手动半自动
import java.util.HashMap;
import java.util.LinkedList;
class LRUCache {
private HashMap<Integer, Integer> map;
private LinkedList<Integer> list;
private int cap;
public LRUCache(int capacity) {
this.cap = capacity;
map = new HashMap<>();
list = new LinkedList<>();
}
public int get(int key) {
if (!map.containsKey(key)) {
return -1;
}
int val = map.get(key);
list.remove((Integer) key);
list.addFirst(key);
return val;
}
public void put(int key, int val) {
if (map.containsKey(key)) {
list.remove((Integer) key);
} else if (list.size() >= cap) {
int leastRecentlyUsed = list.removeLast();
map.remove(leastRecentlyUsed);
}
map.put(key, val);
list.addFirst(key);
}
}
手动实现
class LRUCache {
// key -> Node(key, val)
private HashMap<Integer, Node> map;
// Node(k1, v1) <-> Node(k2, v2)...
private DoubleList cache;
// 最大容量
private int cap;
public LRUCache(int capacity) {
this.cap = capacity;
map = new HashMap<>();
cache = new DoubleList();
}
public int get(int key) {
if (!map.containsKey(key)) {
return -1;
}
// 将该数据提升为最近使用的
makeRecently(key);
return map.get(key).val;
}
public void put(int key, int val) {
if (map.containsKey(key)) {
// 删除旧的数据
deleteKey(key);
// 新插入的数据为最近使用的数据
addRecently(key, val);
return;
}
if (cap == cache.size()) {
// 删除最久未使用的元素
removeLeastRecently();
}
// 添加为最近使用的元素
addRecently(key, val);
}
/* 将某个 key 提升为最近使用的 */
private void makeRecently(int key) {
Node x = map.get(key);
// 先从链表中删除这个节点
cache.remove(x);
// 重新插到队尾
cache.addLast(x);
}
/* 添加最近使用的元素 */
private void addRecently(int key, int val) {
Node x = new Node(key, val);
// 链表尾部就是最近使用的元素
cache.addLast(x);
// 别忘了在 map 中添加 key 的映射
map.put(key, x);
}
/* 删除某一个 key */
private void deleteKey(int key) {
Node x = map.get(key);
// 从链表中删除
cache.remove(x);
// 从 map 中删除
map.remove(key);
}
/* 删除最久未使用的元素 */
private void removeLeastRecently() {
// 链表头部的第一个元素就是最久未使用的
Node deletedNode = cache.removeFirst();
// 同时别忘了从 map 中删除它的 key
int deletedKey = deletedNode.key;
map.remove(deletedKey);
}
class Node {
public int key, val;
public Node next, prev;
public Node(int k, int v) {
this.key = k;
this.val = v;
}
}
class DoubleList {
// 头尾虚节点
private Node head, tail;
// 链表元素数
private int size;
public DoubleList() {
// 初始化双向链表的数据
head = new Node(0, 0);
tail = new Node(0, 0);
head.next = tail;
tail.prev = head;
size = 0;
}
// 在链表尾部添加节点 x,时间 O(1)
public void addLast(Node x) {
x.prev = tail.prev;
x.next = tail;
tail.prev.next = x;
tail.prev = x;
size++;
}
// 删除链表中的 x 节点(x 一定存在)
// 由于是双链表且给的是目标 Node 节点,时间 O(1)
public void remove(Node x) {
x.prev.next = x.next;
x.next.prev = x.prev;
size--;
}
// 删除链表中第一个节点,并返回该节点,时间 O(1)
public Node removeFirst() {
if (head.next == tail)
return null;
Node first = head.next;
remove(first);
return first;
}
// 返回链表长度,时间 O(1)
public int size() {
return size;
}
}
}
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· .NET10 - 预览版1新功能体验(一)