ICPC Central Europe Regional Contest 2019-I-Saba1000kg

题目传送门

sol:因为查询的点一共最多只有$100000$个。若当本次查询的点比较少,小于$\sqrt{100000}$,那我们可以枚举起始点$u$和终点$v$,若$u, v$之间有边,则用并查集将$u, v$节点合并,最后统计有多少个联通块;若当本次查询的点比较多,大于$\sqrt{100000}$,那我们可以枚举所有边,若$u, v$都在本次查询的点集内,则用并查集将$u, v$节点合并,最后统计有多少个联通块。

  • 二分+并查集
    #include <bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    typedef pair<int, int> PII;
    const int MAXN = 100010;
    inline int read() {
        int n = 0, f = 1; char c = getchar();
        while (c < '0' || c > '9') {
            if (c == '-') f = -f;
            c = getchar();
        }
        while (c >= '0' && c <= '9') {
            n = 10 * n + (c ^ '0');
            c = getchar();
        }
        return f * n;
    }
    vector<int> edge[MAXN];
    int node[MAXN], dsu[MAXN];
    int find(int i) {
        if (dsu[i] == -1) return i;
        return dsu[i] = find(dsu[i]);
    }
    bool search_1(int u, int v) {
        int l = -1, r = edge[u].size();
        while (l < r - 1) {
            int m = l + r >> 1;
            if (edge[u][m] == v) return true;
            if (edge[u][m] < v) l = m;
            if (edge[u][m] > v) r = m;
        }
        return false;
    }
    bool search_2(int l, int r, int k) {
        if (node[l] == k || node[r] == k) return true;
        while (l < r - 1) {
            int m = l + r >> 1;
            if (node[m] == k) return true;
            if (node[m] < k) l = m;
            if (node[m] > k) r = m;
        }
        return false;
    }
    void slove_1(int n, int k) {
        for (int i = 1; i <= k; i++) {
            for (int j = 1; j < i; j++) {
                if (search_1(node[i], node[j])) {
                    int fu = find(node[i]);
                    int fv = find(node[j]);
                    if (fu != fv) dsu[fu] = fv;
                }
            }
        }
        int ans = 0;
        for (int i = 1; i <= k; i++) {
            if (dsu[node[i]] == -1) ans ++;
            else dsu[node[i]] = -1;
        }
        printf("%d\n", ans);
    }
    int slove_2(int n, int k) {
        for (int u = 1; u <= n; u++) {
            for (int v : edge[u]) {
                if (search_2(1, k, u) && search_2(1, k, v)) {
                    int fu = find(u);
                    int fv = find(v);
                    if (fu != fv) dsu[fu] = fv;
                }
            }
        }
        int ans = 0;
        for (int i = 1; i <= k; i++) {
            if (dsu[node[i]] == -1) ans ++;
            else dsu[node[i]] = -1;
        }
        printf("%d\n", ans);
    }
    int main() {
        int n = read(), m = read(), q = read();
        for (int i = 1; i <= m; i++) {
            int u = read(), v = read();
            edge[u].push_back(v);
            edge[v].push_back(u);
        }
        for (int i = 1; i <= n; i++) {
            sort(edge[i].begin(), edge[i].end());
        }
        memset(dsu, -1, sizeof(dsu));
        while (q--) {
            int k = read();
            for (int i = 1; i <= k; i++) node[i] = read();
            sort(node + 1, node + 1 + k);
            if (k <= 320) slove_1(n, k);
            else slove_2(n, k);
        }
        return 0;
    }

    ------------------------------------------------------------分隔线------------------------------------------------------------

    总结:这道题的解法真妙,一道题里用到了两种不同策略。$solve1$的复杂度是$O(k^2\log_2k)$,当k比较小时非常快,$slove2$的复杂度是$O(m\log_2k)$,随着$k$的增加变化不大。所以$k$小用$slove1$,$k$大用$slove2$。

posted @ 2020-05-18 16:52  Jathon-cnblogs  阅读(279)  评论(0编辑  收藏  举报