LeetCode 图

DAG有向无环图 拓扑排序(207,208)

拓扑排序判断有无环。判断是否是有向无环图

方法1:DFS

 

思路:(自己多在演草纸上想想,把所有演草纸收集起来!)

题解:https://chenzhuo.blog.csdn.net/article/details/91127897

class Solution {
public:
    bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
        vector<int> flag(numCourses,0);
        vector<vector<int>> tmp(numCourses);
        if(prerequisites.empty()) return true;
        for(int i=0;i<prerequisites.size();i++){
            tmp[prerequisites[i][0]].push_back(prerequisites[i][1]);
        }
        bool ans=true;
        for(int i=0;i<numCourses;i++){
            ans = ans&&DFS(i,flag,tmp);
        }
        return ans;
    }
    bool DFS(int i,vector<int> &flag,vector<vector<int>> &tmp){//注意要加上"&"
        if(flag[i]==-1){
            return false;
        }
        if(flag[i]==1){
            return true;
        }
        //第一次的入口:
        flag[i]=-1;
        for(int j=0;j<tmp[i].size();j++){
            if(DFS(tmp[i][j],flag,tmp)){
                continue;
            }
            return false;
        }
        flag[i]=1;
        return true;
    }
};

 解法2:

方法二:根据入度判断
课程先后顺序可以理解为一个有向图,有解的条件是此图无环。因此我们可以依据其先后顺序构造有向图,并统计每门课程的入度(即其前一门课程的数量)。

然后将入度为0的所有课程压入栈中,然后将这些课程的下一门课程的入度减1,减完后入度为0则入栈。重复上述操作直到栈为空。 如果最后存在入度不为为0的节点就说明有环,无解。

《算法笔记》也有这个算法

class Solution {
public:
    bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
        vector<int> indegree(numCourses);
        vector<vector<int>>Graph(numCourses);
        queue<int> ZeroQ;
        vector<int> ans,empty;//结果数组
        int i,j,cnt=0;
        int start,end;
        //初始化邻接矩阵
        for(i=0;i<prerequisites.size();i++){
            start=prerequisites[i][0];
            end=prerequisites[i][1];
            Graph[end].push_back(start);
            indegree[start]++;
        }
        //初始化队列
        for(i=0;i<numCourses;i++){
            if(indegree[i]==0){
                ZeroQ.push(i);
            }
        }
        while(!ZeroQ.empty()){
            int v=ZeroQ.front();
            ans.push_back(v);
            ZeroQ.pop();
            cnt++;
            for(j=0;j<Graph[v].size();j++){
                int u=Graph[v][j];
                indegree[u]--;
                if(indegree[u]==0){
                    ZeroQ.push(u);
                }
            }
        }
        if(cnt!=numCourses){
            return false;
        }
        return true;
        
    }
};

2019-09-28 09:44:28

简化到不能再简

 

 

class Solution {
public:
    bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
         vector<vector<int>> G(numCourses);
        vector<int> degree(numCourses, 0), bfs;
        for (auto& e : prerequisites)
            G[e[1]].push_back(e[0]), degree[e[0]]++;
        for (int i = 0; i < numCourses; ++i) if (!degree[i]) bfs.push_back(i);
        for (int i = 0; i < bfs.size(); ++i)
            for (int j: G[bfs[i]])
                if (--degree[j] == 0) bfs.push_back(j);
        return bfs.size() == numCourses;
    }
};

第二天:

 

class Solution {
public:
    bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
        vector<vector<int>> graph(numCourses);
        vector<int> inDegree(numCourses,0);
        for(auto& edge : prerequisites){
            graph[edge[1]].push_back(edge[0]);
            ++inDegree[edge[0]];
        }
        vector<int> result;
        for(int i=0;i<numCourses;++i){
            if(inDegree[i]==0) result.push_back(i);
        }
        for(int i=0;i<result.size();++i){
            for(auto j : graph[result[i]]){
                if(--inDegree[j]==0) result.push_back(j);
            }
        }
        return result.size()==numCourses;
    }
};

 

 还是把自己想得太厉害了。然而自己并不能过目不忘。还是要多敲代码,多巩固,真的感觉到了如果能把自己做过的题保证大部分能做对,真的已经很厉害了。


 

 

这个题的代码和上个题完全一样。只是输出换了。

解法1:

队列

 

class Solution {
public:
    vector<int> findOrder(int numCourses, vector<vector<int>>& prerequisites) {
        vector<int> indegree(numCourses);
        vector<vector<int>>Graph(numCourses);
        queue<int> ZeroQ;
        vector<int> ans,empty;//结果数组
        if(numCourses==1){
            empty.push_back(0);
            return empty;
        }
        int i,j,cnt=0;
        int start,end;
        //初始化邻接矩阵
        for(i=0;i<prerequisites.size();i++){
            start=prerequisites[i][0];
            end=prerequisites[i][1];
            Graph[end].push_back(start);
            indegree[start]++;
        }
        //初始化队列
        for(i=0;i<numCourses;i++){
            if(indegree[i]==0){
                ZeroQ.push(i);
            }
        }
        while(!ZeroQ.empty()){
            int v=ZeroQ.front();
            ans.push_back(v);
            ZeroQ.pop();
            cnt++;
            for(j=0;j<Graph[v].size();j++){
                int u=Graph[v][j];
                indegree[u]--;
                if(indegree[u]==0){
                    ZeroQ.push(u);
                }
            }
        }
        if(cnt!=numCourses){
            return empty;
        }
        return ans;
    }
};

 简化版:

2019-09-28

10:32:15

 

 

class Solution {
public:
    vector<int> findOrder(int numCourses, vector<vector<int>>& prerequisites) {
        vector<int> result;//最优答案
        vector<int> empty;//空数组
        queue<int> temp;//存储入度为0的节点
        if(numCourses==0){
            empty.push_back(0);
            return empty;
        }
        vector<vector<int>> graph(numCourses);
        vector<int> inDegree(numCourses,0);
        for(auto& edge : prerequisites){
            graph[edge[1]].push_back(edge[0]);
            inDegree[edge[0]]++;
        }
        for(int i=0;i<numCourses;++i){
            if(!inDegree[i]){
                temp.push(i);
            }
        }
        int cnt=0;
        while(!temp.empty()){
            int pre = temp.front();result.push_back(pre);temp.pop();
            ++cnt;
            for(auto i : graph[pre]){
                if(--inDegree[i]==0) temp.push(i);
            }
        }
        if(cnt!=numCourses) return empty;
        return result;
    }
};

 2019-09-30

09:21:49

 染色问题。

看的评论:采用了贪心算法。

class Solution {
public:
    vector<int> gardenNoAdj(int N, vector<vector<int>>& paths) {
        vector<vector<int>> result(N);
        vector<int> color(N,1);
        for(auto path : paths){
            result[max(path[0],path[1])-1].push_back(min(path[0],path[1])-1);
        }
        for(int i=1;i<N;++i){
            set<int> set_color{1,2,3,4};
            for(int j=0;j<result[i].size();++j){
                set_color.erase(color[result[i][j]]);
            }
            color[i] = *set_color.begin();
        }
        return color;
    }
};

 


2019-10-04

11:40:54

 

 

 

 解法1:Dijkstra算法

 

 

class Solution {
public:
    int networkDelayTime(vector<vector<int>>& times, int N, int K) {
        vector<vector<int>> v(N+1,vector<int>(N+1,-1));
        for(int i=0;i<times.size();i++){
            v[times[i][0]][times[i][1]]=times[i][2];
        }
        vector<int> S(N+1,-1),T(N+1,-1);
        for(int i=1;i<N+1;i++)
            T[i]=v[K][i];
        T[K]=0;
        int min_val=-1,min_idx=-1;
        for(int c=0;c<N;c++){
            //find min_val of T
            min_val=-1;
            for(int i=1;i<T.size();i++){
                if(T[i]!=-1&&S[i]==-1){
                    if(min_val==-1||T[i]<min_val){
                        min_idx=i;
                        min_val=T[i];
                    }
                }
            }
            S[min_idx]=min_val;
            //update
            for(int i=1;i<T.size();i++){
                if(v[min_idx][i]!=-1&&(min_val+v[min_idx][i]<T[i]||T[i]==-1)){
                    T[i]=min_val+v[min_idx][i];
                }  
            }
        }
        int res=-1;
        for(int i=1;i<S.size();i++){
            if(S[i]==-1)
                return -1;
            res=max(res,S[i]);
        }   
        return res;
    }
};

解法2:

2019-10-09(第二次)

Bellman-Ford算法

 

 

 

 

class Solution {
public:
    int networkDelayTime(vector<vector<int>>& times, int N, int K) {

//Bellman-Ford算法
//存储图用邻接表,邻接矩阵需要遍历需要增加O(N)复杂度,将会升为O(N三次方)


        vector<int> D(N+1,-1);
        D[K] = 0;
        for(int c=0;c<N-1;++c){  //只需要N-1 轮就可以,因为D[K] 为0,是已知的 
            for(int j=0;j<times.size();++j){
                int src = times[j][0],des = times[j][1],d = times[j][2];
                if(D[src]!=-1&&(D[src]+d<D[des]||D[des]==-1))
                    D[des]=D[src]+d;
            }
        }
        int res = -1;
        for(int i=1;i<D.size();i++){
            if(D[i]==-1){
                return -1;
            }
            else res = max(res,D[i]);
        }
        return res;
    }      
};

 2019-10-05

09:40:27

解法3:

Bellman-Ford 算法的优化版——SPFA(Shorest path Faster Algorithm)算法

class Solution {
public:
    int networkDelayTime(vector<vector<int>>& times, int N, int K) {
        vector<vector<int>> v(N+1,vector<int>(N+1,-1));
        for(int i=1;i<v.size();++i){
            v[i][i]=0;
        }
        for(int i=0;i<times.size();++i){
            v[times[i][0]][times[i][1]] = times[i][2];
        }
        vector<int> D(N+1,-1);
        D[K] = 0;
        queue<int> q;
        q.push(K);
        while(!q.empty()){
            auto temp = q.front();
            q.pop();
            for(int i=1;i<v.size();++i){
                if(v[temp][i]!=-1 &&(v[temp][i]+D[temp]<D[i]||D[i]==-1)){
                    D[i] = v[temp][i] + D[temp];
                    q.push(i);
                }
            }
        }
        int res = 0;
        for(int i=1;i<N+1;++i){
            if(D[i]==-1){
                return -1;
            }
            res = max(D[i],res);
        }
        return res;
    }      
};

解法4:

Floyd 算法,可用来解决全源最短路问题

 

 

class Solution {
public:
    int networkDelayTime(vector<vector<int>>& times, int N, int K) {
        vector<vector<int>> v(N+1,vector<int>(N+1,-1));
        for(int i=1;i<v.size();++i){
            v[i][i]=0;
        }
        for(int i=0;i<times.size();++i){
            v[times[i][0]][times[i][1]] = times[i][2];
        }
        for(int c=1;c<N+1;++c){
            for(int i=1;i<N+1;++i){
                for(int j=1;j<N+1;++j){
                    if(v[i][c]!=-1 && v[c][j]!=-1 &&(v[i][c]+v[c][j]<v[i][j]||v[i][j]==-1)){
                        v[i][j] = v[i][c]+v[c][j];
                    }
                }
            }
        }
        int res = 0;
        for(int i=1;i<N+1;++i){
            if(v[K][i]==-1){
                return -1;
            }
            res = max(v[K][i],res);
        }
        return res;
    }      
};

 

解法1:

自己写的广搜判断是否是连通图

 

 

 

 

 

 

class Solution {
public:
    bool canVisitAllRooms(vector<vector<int>>& rooms) {
        vector<vector<int>> temp(rooms.size());
        for(int i=0;i<rooms.size();++i){//初始化图
            for(int j=0;j<rooms[i].size();++j){
                temp[i].push_back(rooms[i][j]);
            }
        }
        queue<int> q;
        q.push(0);
        vector<int> result(rooms.size(),0);
        result[0] = 1;
        while(!q.empty()){
            int c = q.front();
            q.pop();
            for(auto cnt : temp[c]){
                if(result[cnt]!=1){
                    result[cnt] = 1;
                    q.push(cnt);
                }
            }
        }
        for(int i=0;i<rooms.size();++i){
            if(result[i]==0){
                return false;
            }
        }
        return true;
    }
};

精简版代码:

class Solution {
public:
    bool canVisitAllRooms(vector<vector<int>>& rooms) {
        queue<int> q;
        unordered_set<int> visited;
        q.push(0);
        visited.insert(0);
        while(!q.empty()){
            int t = q.front();q.pop();
            visited.insert(t);
            for(auto key : rooms[t]){
                if(visited.count(key)) continue;
                q.push(key);
            }
        }
        return visited.size() == rooms.size();
    }
};

解法2:DFS

劣质粗糙代码:

 

 

class Solution {
public:
    int count = 0;
    void dfs(int x,int N,vector<int> &visited,vector<vector<int>> rooms){
        visited[x] = 1;
        ++count;
        for(int i=0;i<rooms[x].size();++i){
            if(!visited[rooms[x][i]]){
                dfs(rooms[x][i],N,visited,rooms);
            }
        }
    }
    bool canVisitAllRooms(vector<vector<int>>& rooms) {
        int N = rooms.size();
        vector<int> visited(N,0);
        dfs(0,N,visited,rooms);
        return count == rooms.size();
    }
};

 


 

 解法1:

自己:

找到出度为0和入度为N-1的点,此点即为法官。

 思路:构建一个出度数组和一个入度数组。

 

 

class Solution {
public:
    int findJudge(int N, vector<vector<int>>& trust) {
        vector<int> inDegree(N+1,0);
        vector<int> outDegree(N+1,0);
        for(auto edge : trust){
            inDegree[edge[1]]++;
            outDegree[edge[0]]++;
        }
        for(int i=1;i<N+1;++i){
            if(outDegree[i]==0 && inDegree[i]==N-1){
                return i;
            }
        }
        return -1;
    }
};

 

解法1:看的评论,自己没想到,自己对DFS的掌握还是不够

思路:DFS染色法,判断拓扑排序中是否有环,并找出不在环内的点(感觉和207,208题有些类似哦,都是判断拓扑排序中是否存在环)

DFS一直往前走,却走回了走过的结点不就是有环了嘛.

 

 代码如下:

#define CIRCLE  1
#define TERMINAL  2
class Solution {
public:
    vector<int> eventualSafeNodes(vector<vector<int>>& graph) {
        int n = graph.size();
        vector<int> v(n);
        vector<int> cnt;
        for(int i=0;i<n;++i){
            if(dfs(graph,v,i)==TERMINAL){
                cnt.push_back(i);
            }
        }
        return cnt;
    }
    int dfs(vector<vector<int>>& g,vector<int>& v,int i){
        if(v[i]) return v[i];
        v[i] = CIRCLE;
        for(auto edge : g[i]){
            if(dfs(g,v,edge)==CIRCLE){
                return CIRCLE;
            }
        }
        return v[i] = TERMINAL;
    }
};

解法2:

BFS,和DFS的思路有很大不同。感觉两种方法的着手点是截然不同的。BFS是从入度,出度考虑的。

 

 

class Solution {
public:
    vector<int> eventualSafeNodes(vector<vector<int>>& graph) {
        vector<int> res, outDegree(graph.size(),0);
        vector<vector<int>> inDegree(graph.size());
        for(int i=0;i<graph.size();++i){//初始化入队的vector<vector<int>>
            for(int j : graph[i]){
                inDegree[j].push_back(i);
                outDegree[i]++;
            }
        }
        for(int i=0;i<graph.size();++i){
            if(outDegree[i]==0){
                res.push_back(i);
            }
        }
        int idx = 0;
        while(idx < res.size()){
            int i = res[idx];
            ++idx;
            for(auto j : inDegree[i]){
                outDegree[j]--;
                if(outDegree[j]==0){
                    res.push_back(j);
                }
            }
        }
        sort(res.begin(),res.end());
        return res;
        
        
    }
};

简化版:

class Solution {
public:
    vector<int> eventualSafeNodes(vector<vector<int>>& graph) {
        vector<int> res, outDegree(graph.size(),0);
        vector<vector<int>> inDegree(graph.size());
        for(int i=0;i<graph.size();++i){//初始化入队的vector<vector<int>>
            for(int j : graph[i]){
                inDegree[j].push_back(i);
            }
            outDegree[i] = graph[i].size();
            if(outDegree[i]==0){
                res.push_back(i);
            }            
        }
        int idx = 0;
        while(idx < res.size()){
            int i = res[idx];
            ++idx;
            for(auto j : inDegree[i]){
                outDegree[j]--;
                if(outDegree[j]==0){
                    res.push_back(j);
                }
            }
        }
        sort(res.begin(),res.end());
        return res;
    }
};

 

 

 为下面代码做铺垫的新知识:

 

 https://www.cnblogs.com/hustfeiji/articles/5174983.html

 

 这就是说multiset内部是自动排好序的。

解法1:

思路:DFS

 

 

 

 

 

class Solution {
public:
    map<string, multiset<string>> targets;
    vector<string> route;
    vector<string> findItinerary(vector<vector<string>>& tickets) {
        for (auto ticket : tickets)
            targets[ticket[0]].insert(ticket[1]);
        visit("JFK");
        return vector<string>(route.rbegin(), route.rend());
    }

void visit(string airport) {
    while (targets[airport].size()) {
        string next = *targets[airport].begin();
        targets[airport].erase(targets[airport].begin());
        visit(next);
    }
    route.push_back(airport);
}

};

本题是一道树的题目。

就是返回每层各个元素相加和的最大的那个层 

 

法1:

BFS

 

 

class Solution {
public:
    int maxLevelSum(TreeNode* root) {
        queue<TreeNode*> q;
        q.push(root);
        int maxv=root->val,res=1,layer=0;
        while(!q.empty()){
            layer++;
            int n=q.size(),sum=0;
            for(int i=0;i<n;i++){
                TreeNode* tmp=q.front();q.pop();
                sum+=tmp->val;
                if(tmp->left) q.push(tmp->left);
                if(tmp->right) q.push(tmp->right);
            }
            if(sum>maxv){
                maxv=sum;
                res=layer;
            }
        }
        return res;
    }
};

 

法2:

DFS:

 

 

借助map结构,遍历到各个层时,map[n] 就加上那个属于本层的节点的元素值。 

class Solution {
public:
    map<int,int> mp;
    void dfs(TreeNode* root, int d){
        if(!root){
            return;
        }
        mp[d] += root->val;
        dfs(root->left,d+1);
        dfs(root->right,d+1);
    }
    int maxLevelSum(TreeNode* root) {
        int res = 0, max_sum = INT_MIN;
        dfs(root,1);
        auto iter = mp.begin();
        while(iter != mp.end()){
            if(iter->second > max_sum){
                max_sum = iter->second;
                res = iter->first;
            }
            iter++;
        }
        return res;
    }
};

 

 解法1:

并查集

题目很拗口。。。但本质就是计算一个图的连通分量的个数,总石头数减去连通分量个数就是结果。

每次move移除掉一个共享同一行或列的(两个或多个石头)中的一个 如果把每个石头当一个点,如果两个石头间有共同x或y坐标,就给这两个点画一条线(边)。那么对应move操作就是把其中一条边的一个点删除,直到不能删为止,也就是说图里面的连通分量的点是要删去的,一直删到连通分量里面没有边(即只剩下一个点)

 

 

 

class Solution {
public:
    vector<int> vec;
    int removeStones(vector<vector<int>>& stones) {
        int n = stones.size();
        vec = vector<int>(n);
        for(int i=0;i<n;++i){
            vec[i] = i;
        }
        for(int i=0;i<n;++i){
            for(int j=0;j<n;++j){
                if(stones[i][0] == stones[j][0] || stones[i][1] == stones[j][1]){
                    Union(i,j);
                }
            }
        }
        int cnt=0;
        for(int i=0;i<n;++i){
            if(vec[i]==i){
                cnt++;
            }
        }
        return n - cnt;
    }
    int find(int i){
        if(vec[i]!=i){
            vec[i] = find(vec[i]);
        }
        return vec[i];
    }
    void Union(int x,int y){
        int faA = find(x);
        int faB = find(y);
        vec[faA] = faB;
    }
};

解法2:

DFS

DFS方法的解题思路: 用dfs求连通分量的个数 最后结果 = stones.size() - 连通分量的个数

 

 

class Solution {
public:
    int removeStones(vector<vector<int>>& stones) {
        vector<bool> vis(stones.size(),false);
        int res = 0;
        for(int i=0;i<stones.size();++i){
            if(vis[i]==true){
                continue;
            }
            dfs(stones,vis,i);
            res++;
        }
        return stones.size()-res;
    }
    void dfs(vector<vector<int>>& stones,vector<bool>& vis,int k){
        vis[k] = true;
        int x = stones[k][0], y = stones[k][1];
        for(int i=0;i<stones.size();++i){
            if(vis[i]==true)
                continue;
            if(stones[i][0] == x || stones[i][1]==y){
                dfs(stones,vis,i);
            }
        }
    }
};

 

 

解法1:

并查集

 

 

 

 

 

class Solution {
public:
    
    int find(vector<int>& union_find, int idx){
        if(union_find[idx] == -1)   return idx;
        return find(union_find,union_find[idx]);
    }
    
    void Union(vector<int>&union_find, int idx1, int idx2){
        int parent1 = find(union_find,idx1);
        int parent2 = find(union_find,idx2);
        //Always keep the same rule, merge parent1 to parent2;
        if(parent1 != parent2)  union_find[parent1] = parent2;
    }

    vector<vector<string>> accountsMerge(vector<vector<string>>& accounts) {
        vector<vector<string>> res;
        int n = accounts.size();
        
        vector<int> union_find(n,-1);
        map<string,int> mailUser;
        map<int,vector<string>> mails;
        
        for(int i=0; i<accounts.size(); i++){
            for(int j=1; j<accounts[i].size(); j++){
                if(mailUser.count(accounts[i][j])){
                    // if the same email has been stored before, find its user and unite them
                    int idx1 = find(union_find,i);
                    int idx2 = find(union_find,mailUser[accounts[i][j]]);
                    Union(union_find,idx1,idx2);
                }
                //**IMPORTANT** 
                //We can still assign this mail to the "current" user, because we have already performed union
                mailUser[accounts[i][j]] = i;
            }
        }
        
        for(auto pair:mailUser){
            //Find its real user
            int user = find(union_find,pair.second);
            mails[user].push_back(pair.first);
        }
        
        for(auto pair:mails){
            vector<string> temp = pair.second;
            sort(temp.begin(),temp.end());
            temp.insert(temp.begin(),accounts[pair.first][0]);
            res.push_back(temp); 
        }
        
        return res;
    }
};

 

 

解法1:
DFS C++

 

 

 

class Solution {
private:
    unordered_map<string,vector<pair<string,double>>> children;
    pair<bool,double> search(string& a,string& b,unordered_set<string>& visited,double val){
        if(visited.count(a) == 0){
            visited.insert(a);
            for(auto p : children[a]){
                double temp = val * p.second;
                if(p.first == b) return make_pair(true,temp);
                auto result = search(p.first,b,visited,temp);
                if(result.first){
                    return result;
                }
            }
        }
        return make_pair(false,-1.0);
    }
public:
    vector<double> calcEquation(vector<vector<string>>& equations, vector<double>& values, vector<vector<string>>& queries) {
        vector<double> ans;
        for(int i = 0;i<equations.size();++i){
            children[equations[i][0]].push_back(make_pair(equations[i][1],values[i]));
            children[equations[i][1]].push_back(make_pair(equations[i][0],
                                                              1.0 / values[i]));
        }
        for(auto p : queries){
            unordered_set<string> visited;
            // p .first == p.second is special case
            ans.push_back(p[0] == p[1] && children.count(p[0]) ? 
                          1.0 : search(p[0],p[1],visited,1.0).second);
        }
        return ans;
        
    }
};

 

 

 

 

 

class Solution {
public:
    int maxPoints(vector<vector<int>>& points) {
        //两点确定一条直线
        if(points.size()<3)return points.size();
        
        int Max=0;
        for(int i=0;i<points.size();++i)//i表示数组中的第i+1个点
        {
            //same用来表示和i一样的点
            int same=1;
            for(int j=i+1;j<points.size();++j)//j表示数组中的第j+1个点
            {
                int count=0;
                // i、j在数组中是重复点,计数
                if(points[i][0]==points[j][0]&&points[i][1]==points[j][1])same++;
                else{//i和j不是重复点,则计算和直线ij在一条直线上的点
                    count++;
                    long long xDiff = (long long)(points[i][0] - points[j][0]);//Δx1
                    long long yDiff = (long long)(points[i][1] - points[j][1]);//Δy1
                    
                    for (int k = j + 1; k < points.size(); k ++)//Δy1/Δx1=Δy2/Δx2 => Δx1*Δy2=Δy1*Δx2,计算和直线ji在一条直线上的点
                        if (xDiff * (points[i][1] - points[k][1]) == yDiff * (points[i][0] - points[k][0]))
                            count++;
                }
                Max=max(Max,same+count);
            }
            if(Max>points.size()/2)return Max;//若某次最大个数超过所有点的一半,则不可能存在其他直线通过更多的点
        }
        return Max;
    }
};

posted @ 2019-12-27 23:43  JasonPeng1  阅读(311)  评论(0编辑  收藏  举报