欧拉函数-bzoj2818-简单推导

This article is made by Jason-Cow.
Welcome to reprint.
But please post the writer's address.

http://www.cnblogs.com/JasonCow/

 

 

/*

ans=

   sigma(for each prime<=n)  

  {

    {

      simga(for i=1 to n/now prime) phi[i] 

    }*2  -1

  }

*/

 

 

 1 #include <cstdio>
 2 int GI(){
 3   int x=0,c=getchar(),f=0;
 4   while(c<'0'||c>'9'){if(c=='-')f=1;c=getchar();}
 5   while(c>='0'&&c<='9')x=x*10+c-'0',c=getchar();
 6   return f?-x:x;
 7 }
 8 const int maxn=(int)1e7+10;
 9 int p[maxn],cnt;bool flag[maxn];long long ans,phi[maxn];
10 void init(int n){
11     phi[1]=1;
12     for(int i=2;i<=n;i++){
13         if(!flag[i])p[++cnt]=i,phi[i]=i-1;
14         for(int j=1;j<=cnt && i*p[j]<=n;j++){
15             flag[i*p[j]]=1;
16             if(i%p[j]==0){phi[i*p[j]]=phi[i]*p[j];break;}
17             phi[i*p[j]]=phi[i]*(p[j]-1);
18         }
19     }
20     for(int i=2;i<=n;i++)phi[i]+=phi[i-1];
21 }
22 int main(){
23     int n=GI();
24     init(n);
25     for(int i=1;i<=cnt;i++)ans+=phi[n/p[i]]*2-1;
26     printf("%lld\n",ans);
27   return 0;
28 }

 

posted @ 2017-04-15 21:14  墨鳌  阅读(292)  评论(0编辑  收藏  举报