区间(分块)

Farmer FJ有一个长度为n的牛棚a,每个牛棚有对应的值a[i],下标从1开始,对于一个正整数k,b[i]表示a[i]*a[i+1]*……*a[i+k-1]再%p,我们需要输出所有b[i]的异或和。

输入:n,k,p,A,B,C,D  a[1]=A  a[i]=(a[i-1]*B+C)%D;

1<=n<=2*10^7,    k,p,A,B,C,D<=10^9,k不一定为质数。

 

输入样例 

1000 97 96998351
41 1668 505 2333

输出样例 

1749769

 

正解:我们把序列分块,每个块的大小为k,最后一个块大小任意,对于每一个块维护块中元素到块头和块尾的经过的元素的乘积,对于一个询问,要么是整个块的乘积,要么是跨越块的前缀乘积和后缀乘积,O(n)预处理和O(1)处理询问,而且时间还开了2s,不虚。

CODE:

#include<iostream>
#include<algorithm>
#include<fstream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
using namespace std;

int n,k,ed;
long long p,A,B,C,D;
int a[20001000],lans[20001000],rans[20001000];//lans[i]表示i到块尾的乘积,rans[i]表示i到块头的成绩 

int main()
{
    freopen("2261.in","r",stdin);
    freopen("2261.out","w",stdout);
    scanf("%d%d%lld",&n,&k,&p);
    scanf("%lld%lld%lld%lld",&A,&B,&C,&D);
    
    a[1] = A;
    for (register int i=2; i<=n; i++)
    a[i] = (1ll*a[i-1]*B%D+C)%D;
    
    for (register int i=k; i<=n; i+=k)
    {
        lans[i] = a[i]%p;
        for (register int j=i-1; j>=i-k+1; j--)
        lans[j] = (1ll*lans[j+1]*a[j])%p;
        rans[i-k+1] = a[i-k+1]%p;
        for (register int j=i-k+2; j<=i; j++)
        rans[j] = (1ll*rans[j-1]*a[j])%p;
        ed = i;
    }
    
    ed = ed+1;
    lans[n] = a[n]%p;
    for (int i=n-1; i>=ed; i--)
    lans[i] = (1ll*lans[i+1]*a[i])%p;
    rans[ed] = a[ed]%p;
    for (int i=ed+1; i<=n; i++)
    rans[i] = (1ll*rans[i-1]*a[i])%p;
    
    long long ans = 0;
    for (register int i=1; i<=n-k+1; i++)
    {
        if (i%k==1) ans = ans^lans[i];
        else ans = ans^(((long long)lans[i]*rans[i+k-1])%p);
    }
    printf("%lld\n",ans);
    
    return 0;
}

 

posted @ 2017-11-01 21:39  最终惊吓者——Janous  阅读(255)  评论(0编辑  收藏  举报