characteristic

Field Characteristic


For a field K with multiplicative identity 1, consider the numbers 2=1+13=1+1+14=1+1+1+1, etc. Either these numbers are all different, in which case we say that K has characteristic 0, or two of them will be equal. In the latter case, it is straightforward to show that, for some number p, we have 1+1+...+1_()_(p times)=0. If p is chosen to be as small as possible, then p will be a prime, and we say that K has characteristic p. The characteristic of a field K is sometimes denoted ch(K).

The fields Q (rationals), R (reals), C (complex numbers), and the p-adic numbers Q_p have characteristic 0. For p a prime, the finite field GF(p^n) has characteristic p.

If H is a subfield of K, then H and K have the same characteristic.


SEE ALSO

CharacteristicFieldField Characteristic ExponentFinite FieldSubfield
posted @ 2022-03-14 14:20  zJanly  阅读(202)  评论(0编辑  收藏  举报