使用Redis实现限流的几种方法
限流是高并发场景中重要的一环,实现限流的方案有很多种,今天围绕Redis来简单介绍几种限流方案。题外话:Redis不仅仅是可以做限流,还可以做数据统计、排行榜、附近的人等功能,有空我会写一篇介绍一下。
常见的限流算法有:计数器、滑动窗口、漏桶算法、令牌桶等。那么如何使用Redis来实现呢?
基于Redis的setnx的操作(计数器)
我们在使用Redis的分布式锁的时候,大家都知道是依靠了setnx的指令,在CAS(Compare and swap)的操作的时候,同时给指定的key设置了过期时间(expire)。限流的主要目的就是为了在单位时间内,有且仅有N数量的请求能够访问我的代码程序。所以依靠setnx可以很轻松的做到这方面的功能。
比如我们需要在10秒内限定20个请求,那么我们在setnx的时候可以设置过期时间10,当请求的setnx数量达到20时候即达到了限流效果。
// 限流的个数 private int maxCount = 10; // 指定的时间内 private long interval = 60; // 原子类计数器 private AtomicInteger atomicInteger = new AtomicInteger(0); // 起始时间 private long startTime = System.currentTimeMillis(); public boolean limit(int maxCount, int interval) { atomicInteger.addAndGet(1); if (atomicInteger.get() == 1) { startTime = System.currentTimeMillis(); atomicInteger.addAndGet(1); return true; } // 超过了间隔时间,直接重新开始计数 if (System.currentTimeMillis() - startTime > interval * 1000) { startTime = System.currentTimeMillis(); atomicInteger.set(1); return true; } // 还在间隔时间内,check有没有超过限流的个数 if (atomicInteger.get() > maxCount) { return false; } return true; }
当然这种做法的弊端是很多的,比如当统计1-10秒的时候,无法统计2-11秒之内,如果需要统计N秒内的M个请求,那么我们的Redis中需要保持N个key等等问题。
基于Redis的数据结构zset(滑动窗口)
上面的计数器算法存在的弊端,使用滑动窗口可以很容易的实现。上面提到的1-10怎么变成2-11,其实可以理解为窗口大小不变,变化的是窗口的启始结束位置,而我们如果用Redis的list数据结构可以轻而易举的实现该功能。
我们可以将请求打造成一个zset数组,当每一次请求进来的时候,value保持唯一,可以用UUID生成,而score可以用当前时间戳表示,因为score我们可以用来计算当前时间戳之内有多少的请求数量。而zset数据结构也提供了range方法让我们可以很轻易的获取到2个时间戳内有多少请求
代码实现也比较简单,
public Response limitFlow(){ Long currentTime = new Date().getTime(); System.out.println(currentTime); if(redisTemplate.hasKey("limit")) { Integer count = redisTemplate.opsForZSet().rangeByScore("limit", currentTime - intervalTime, currentTime).size(); // intervalTime是限流的时间 System.out.println(count); if (count != null && count > 5) { return Response.ok("每分钟最多只能访问5次"); } } redisTemplate.opsForZSet().add("limit",UUID.randomUUID().toString(),currentTime); return Response.ok("访问成功"); }
漏桶算法
漏桶算法思路很简单,用一个漏斗来控制请求的速率。在漏斗上方是收到的所有请求,请求就像水一样会进入漏斗中,同时漏斗也会以恒定的速度将水(请求)从下方进行排出,被排出的水(请求)才能访问服务。当请求量不大时候,如进水速率 < 出水速率那么其实漏斗并没有起到作用;当请求量很大的时候,超过漏斗容量的请求将被溢出,并且出水口可以一直保证恒定的速率。
基于Redis的令牌桶算法
提到限流就不得不提到令牌桶算法了。令牌桶算法提及到输入速率和输出速率,当输出速率大于输入速率,那么就是超出流量限制了。
也就是说我们每访问一次请求的时候,可以从Redis中获取一个令牌,如果拿到令牌了,那就说明没超出限制,而如果拿不到,则结果相反。可以理解成医院的挂号看病,只有拿到号以后才可以进行诊病。依靠上述的思想,我们可以结合Redis的List数据结构很轻易的做到这样的代码,只是简单实现。另外,关注互联网架构师,在后台回复:2T,可以获取我整理的 Redis 系列面试题和答案,非常齐全。
依靠List的leftPop来获取令牌
public Response limitFlow(Long id){ Object result = redisTemplate.opsForList().leftPop("limit_list"); if(result == null){ return Response.ok("当前令牌桶中无令牌"); } return Response.ok("访问成功");
}
再依靠Java的定时任务,定时往List中rightPush令牌,当然令牌也需要唯一性,所以我这里还是用UUID进行了生成.一旦需要提高速率,则按需提高放入桶中的令牌的速率即可。
@Scheduled(fixedDelay = 100,initialDelay = 0) public void setIntervalTimeTask(){ redisTemplate.opsForList().rightPush("limit_list",UUID.randomUUID().toString()); }
网上还有Redis+Lua的实现方案,鉴于对Lua不熟悉就不介绍了,有兴趣的同学可以去研究下,当然有比较有创意的方案也可以一块讨论下。