Harr与LBP分类器对象识别

Haar与LBP分类器对象识别:

 

一、Haar特征:

     Haar和LBP特征原理及实现在前面的博文中讲的很详细这里就不再赘述。     Haar特征原理及实现:https://www.cnblogs.com/Jack-Elvis/p/11640931.html

 

                                         https://www.cnblogs.com/Jack-Elvis/p/11640970.html                                    

 

 

二、LBP特征:

       LBP特征原理及实现https://www.cnblogs.com/Jack-Elvis/p/11813122.html

                                           https://www.cnblogs.com/Jack-Elvis/p/11815849.html

 

 三、AdaBoost分类器原理:

       

 

四、了解以上原理以后,进行Haar特征和LBP特征分类器的人脸检测:

  1.Haar特征:

       这里要用到opencv自带的haar检测器xml文件(后面可以自己训练检测器文件)

       在自己安装opencv的文件路经  E:/opencv/build/etc/haarcascades/haarcascade_frontalface_alt.xml

      

 

 

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace cv;
using namespace std;

CascadeClassifier face_cascader;   //定义一个分类器变量
String haarfile = "E:/opencv/build/etc/haarcascades/haarcascade_frontalface_alt.xml";
String lbpfile = "E:/opencv/build/etc/lbpcascadeslbpcascade_frontalface.xml";
int main(int argc, char** argv) {
    if (!face_cascader.load(haarfile)) {   //加载haar分类器xml文件
        printf("could not load image...\n");
        return -1;
    }
    namedWindow("demo-win", CV_WINDOW_AUTOSIZE);
    Mat src = imread("H:/123.jpg");   //读取图片
    if (src.empty()) {
        printf("could not load image...\n");
        return -1;
    }
    imshow("input image", src);

    Mat gray;
    vector<Rect> faces;
    cvtColor(src, gray, COLOR_BGR2GRAY); //转化为灰度图像
    equalizeHist(gray, gray);            //均值化
    int st = getTickCount();             //st被赋值此时间
    face_cascader.detectMultiScale(gray, faces, 1.1, 3, 0, Size(30, 30));
    int et = (getTickCount() - st);     // et=此时的时间-st (人脸检测时间)
    printf("time consume : %d", et);

    for (size_t t = 0; t < faces.size(); t++) {   //画出检测出的每个人脸
        rectangle(src, faces[t], Scalar(255, 0, 0), 2, 8, 0);
    }
    imshow("demo-win", src);


    waitKey(0);
    return 0;
}

 

 

        实验结果:

 

       time consume:

 

2.LBP特征:

   在自己安装opencv的文件路经:E:/opencv/build/etc/lbpcascadeslbpcascade_frontalface.xml

 

  

      代码只有一个位置发生变化,

 

 代码:

 

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace cv;
using namespace std;

CascadeClassifier face_cascader;
String haarfile = "E:/opencv/build/etc/haarcascades/haarcascade_frontalface_alt.xml";
String lbpfile = "E:/opencv/build/etc/lbpcascadeslbpcascade_frontalface.xml";
int main(int argc, char** argv) {
    if (!face_cascader.load(lbpfile)) {
        printf("could not load image...\n");
        return -1;
    }
    namedWindow("demo-win", CV_WINDOW_AUTOSIZE);
    Mat src = imread("H:/123.jpg");
    if (src.empty()) {
        printf("could not load image...\n");
        return -1;
    }
    imshow("input image", src);

    Mat gray;
    vector<Rect> faces;
    cvtColor(src, gray, COLOR_BGR2GRAY);
    equalizeHist(gray, gray);
    int st = getTickCount();
    face_cascader.detectMultiScale(gray, faces, 1.1, 3, 0, Size(30, 30));
    int et = (getTickCount() - st);
    printf("time consume : %d", et);

    for (size_t t = 0; t < faces.size(); t++) {
        rectangle(src, faces[t], Scalar(255, 0, 0), 2, 8, 0);
    }
    imshow("demo-win", src);


    waitKey(0);
    return 0;
}

 

       实验结果:

 

           time consume:

 

 

五、结论:

 

 

posted @ 2020-04-17 21:06  量子与太极  阅读(720)  评论(0编辑  收藏  举报