基于NetMQ的TLS框架NetMQ.Security的实现分析

基于NetMQ的TLS框架NetMQ.Security的实现分析

前言

介绍

NetMQ是ZeroMQ的C#移植版本,它是对标准socket接口的扩展。它提供了一种异步消息队列,多消息模式,消息过滤(订阅),对多种传输协议的无缝访问。
当前有2个版本正在维护,版本3最新版为3.3.4,版本4最新版本为4.0.0.1。
NetMQ.Security是基于NetMQ的上实现了TLS层。具体描述文档可以看这里

交互过程

TLS连接需要进行4次握手,如下图所示。
1.png

打星号是可选项。

支持的协议

NetMQ.Security是在TLS1.2协议上的实现。

TLS协议

想要对TLS有一个了解,可以看该篇文章

在TCP/IP协议之上是Record协议,然后是HandShake协议,HandShake协议包括HandShake协议,Change Spec协议及Alert协议。
2.png
NetMQ.Security 实现了TLS中的2层子协议,Handshake协议和Record协议。Alert协议暂时不支持。

  • Handshake协议:实现了服务端和客户端之间相互验证,协商加密和MAC算法以及保密密钥,用来保护在SSL记录中发送的数据。
  • Record协议: 提供保密性和完整性。使用握手协议定义的密钥和mac值对数据进行加密及校验。
  • Alert协议:客户端和服务端之间发生错误时,向对方发送一个警告。如果是致命错误,则算法立即关闭SSL连接,双方还会先删除相关的会话号,秘密和密钥。每个警报消息共2个字节,第1个字节表示错误类型,如果是警报,则值为1,如果是致命错误,则值为2;第2个字节制定实际错误类型。

具体协议格式可以看这篇文章进行了一个归纳。

支持的算法

目前NetMQ.Security只实现了RSA + AES (128/256) + SHA (1/256)

实现

NetMQ.Security是在NetMQ数据交互之间增加了一个SecureChannel层,在创建连接之后进行TLS握手,握手完成及可对数据进行加密和解密。每个连接都有一个SecureChannel,握手完成后会保存加解密的密钥。


public delegate bool VerifyCertificateDelegate(X509Certificate2 certificate2);
public interface ISecureChannel : IDisposable
{
    bool SecureChannelReady { get; }
    X509Certificate2 Certificate { get; set; }
    CipherSuite[] AllowedCipherSuites { get; set; }
    void SetVerifyCertificate(VerifyCertificateDelegate verifyCertificate);
    bool ProcessMessage(NetMQMessage incomingMessage, IList<NetMQMessage> outgoingMesssages);
    NetMQMessage EncryptApplicationMessage(NetMQMessage plainMessage);
    NetMQMessage DecryptApplicationMessage(NetMQMessage cipherMessage);
}

public class SecureChannel : ISecureChannel
{
    private HandshakeLayer m_handshakeLayer;
    private RecordLayer m_recordLayer;
    private readonly OutgoingMessageBag m_outgoingMessageBag;
    private readonly byte[] m_protocolVersion = new byte[] { 3, 3 };
    public SecureChannel(ConnectionEnd connectionEnd)
    {
        m_handshakeLayer = new HandshakeLayer(this, connectionEnd);
        m_handshakeLayer.CipherSuiteChange += OnCipherSuiteChangeFromHandshakeLayer;
        m_recordLayer = new RecordLayer(m_protocolVersion);
        m_outgoingMessageBag = new OutgoingMessageBag(this);
    }
    ...
}
  • SecureChannelReady: 是否完成握手,完成握手后续数据都进行加解密处理。
  • Certificate: X509证书,NetMQ的客户端暂时不支持证书。
  • AllowedCipherSuites: 支持的算法簇,客户端和服务端会对其进行商榷来确定最终的算法。
  • SetVerifyCertificate: 服务端接收到连接时需要加载私钥。
  • ProcessMessage: TLS握手。
  • EncryptApplicationMessage: 加密数据。
  • DecryptApplicationMessage: 解密数据。
  • HandshakeLayer: 握手层。
  • RecordLayer: 记录层。
  • OutgoingMessageBag: 握手时向对端发送的数据包。
  • m_protocolVersion: 协议版本号,源码用的是0,1。我改为了3,3,目前只支持3,3。

代码示例可以看NetMQ的开源开发者之一Doron Somech的博客,NetMQ.Security也是他在NetMQ上实现的,具体代码可以看NetMQ.Securiy,不过我下面的代码进行了一点修改,可以到这里看。

握手

第一次握手
Client Hello

TLS1.2 ClientHello的Record结构如下:

ContentType (1,handshake:22)
ProtocolVersion(2)
握手协议长度:(2)
握手协议数据
    HandShakeType(ClientHello:1)
    内容长度(3)
    内容
        TLS版本号(2)
        随机数(32,4位时间+28位随机数)
        SessionId长度(1)
        SessionId(0到32位)
        Cipher Suites长度(2)
        Cipher Suites列表
        压缩方法长度(1)
        压缩方法    
        扩展长度(2)
        扩展内容

括号内的数字表示字节长度,括号内,之后是对其具体值或一些解释。

public bool ProcessMessage(NetMQMessage incomingMessage, IList<NetMQMessage> outgoingMesssages)
{
    ContentType contentType = ContentType.Handshake;

    if (incomingMessage != null)
    {
        ...
    }

    bool result = false;

    if (contentType == ContentType.Handshake)
    {
        result = m_handshakeLayer.ProcessMessages(incomingMessage, m_outgoingMessageBag);
        ...
    }
    else
    {
        ChangeSuiteChangeArrived = true;
    }

    return (SecureChannelReady = result && ChangeSuiteChangeArrived);
}

ProcessMessage方法对即实现了TLS握手,当incomingMessage参数为null时表示客户端发送的Client Hello。在握手层进行握手处理。

public HandshakeLayer(SecureChannel secureChannel, ConnectionEnd connectionEnd)
{
    // SHA256 is a class that computes the SHA-256 (SHA stands for Standard Hashing Algorithm) of it's input.
    m_localHash = SHA256.Create();
    m_remoteHash = SHA256.Create();

    m_secureChannel = secureChannel;
    SecurityParameters = new SecurityParameters
    {
        Entity = connectionEnd,
        CompressionAlgorithm = CompressionMethod.Null,
        PRFAlgorithm = PRFAlgorithm.SHA256,
        CipherType = CipherType.Block
    };

    AllowedCipherSuites = new[]
    {
        CipherSuite.TLS_RSA_WITH_AES_256_CBC_SHA256,
        CipherSuite.TLS_RSA_WITH_AES_256_CBC_SHA,
        CipherSuite.TLS_RSA_WITH_AES_128_CBC_SHA256,
        CipherSuite.TLS_RSA_WITH_AES_128_CBC_SHA
    };

    VerifyCertificate = c => c.Verify();
}

TLS协议算法簇的枚举值可以看这里

result = m_handshakeLayer.ProcessMessages(incomingMessage, m_outgoingMessageBag);

public bool ProcessMessages(NetMQMessage incomingMessage, OutgoingMessageBag outgoingMessages)
{
    if (incomingMessage == null)
    {
        if (m_lastReceivedMessage == m_lastSentMessage &&
            m_lastSentMessage == HandshakeType.HelloRequest &&
            SecurityParameters.Entity == ConnectionEnd.Client)
        {
            OnHelloRequest(outgoingMessages);
            return false;
        }
        else
        {
            throw new ArgumentNullException(nameof(incomingMessage));
        }
    }

    ...
}
private void OnHelloRequest(OutgoingMessageBag outgoingMessages)
{
    var clientHelloMessage = new ClientHelloMessage { RandomNumber = new byte[RandomNumberLength] };

    m_rng.GetBytes(clientHelloMessage.RandomNumber);

    SecurityParameters.ClientRandom = clientHelloMessage.RandomNumber;

    clientHelloMessage.CipherSuites = AllowedCipherSuites;

    NetMQMessage outgoingMessage = clientHelloMessage.ToNetMQMessage();

    HashLocalAndRemote(outgoingMessage);

    outgoingMessages.AddHandshakeMessage(outgoingMessage);
    m_lastSentMessage = HandshakeType.ClientHello;
}

var clientHelloMessage = new ClientHelloMessage { RandomNumber = new byte[RandomNumberLength] };

internal class ClientHelloMessage : HandshakeMessage
{
    /// <summary>
    /// Get or set the Random-Number that is a part of the handshake-protocol, as a byte-array.
    /// </summary>
    public byte[] RandomNumber { get; set; }

    /// <summary>
    /// Get the part of the handshake-protocol that this HandshakeMessage represents
    /// - in this case a ClientHello.
    /// </summary>
    public override HandshakeType HandshakeType => HandshakeType.ClientHello;
    ...
}

生成一个32字节的随机数。

private RandomNumberGenerator m_rng = new RNGCryptoServiceProvider();
m_rng.GetBytes(clientHelloMessage.RandomNumber);

RNGCryptoServiceProvider用于生成随机数。

生成支持的算法簇

NetMQMessage outgoingMessage = clientHelloMessage.ToNetMQMessage();
public override NetMQMessage ToNetMQMessage()
{
    NetMQMessage message = base.ToNetMQMessage();

    message.Append(RandomNumber);

    message.Append(BitConverter.GetBytes(CipherSuites.Length));

    byte[] cipherSuitesBytes = new byte[2 * CipherSuites.Length];

    int bytesIndex = 0;

    foreach (CipherSuite cipherSuite in CipherSuites)
    {
        cipherSuitesBytes[bytesIndex++] = 0;
        cipherSuitesBytes[bytesIndex++] = (byte)cipherSuite;
    }

    message.Append(cipherSuitesBytes);

    return message;
}
internal abstract class HandshakeMessage
{
    ...
    public virtual NetMQMessage ToNetMQMessage()
    {
        NetMQMessage message = new NetMQMessage();
        message.Append(new[] { (byte)HandshakeType });

        return message;
    }
    ...
}

和TLS协议进行对比,可以看出NetMQ.Security不支持SessionId。

TLS1.2算法族长度是2字节的16进制值,采用Big-Endian[1],而NetMQ.Security直接使用BitConverter.GetBytes(CipherSuites.Length)获取长度字节,而该方法返回的是四个字节Little-Endian[2]格式的十六进制值。

HashLocalAndRemote(outgoingMessage);
private void HashLocalAndRemote(NetMQMessage message)
{
    HashLocal(message);
    HashRemote(message);
}
private void HashLocal(NetMQMessage message)
{
    Hash(m_localHash, message);
}
private static void Hash(HashAlgorithm hash, NetMQMessage message)
{
    foreach (var frame in message)
    {
        // Access the byte-array that is the frame's buffer.
        byte[] bytes = frame.ToByteArray(true);

        // Compute the hash value for the region of the input byte-array (bytes), starting at index 0,
        // and copy the resulting hash value back into the same byte-array.
        hash.TransformBlock(bytes, 0, bytes.Length, bytes, 0);
    }
}

这个方法的目的是计算发送和接收的握手数据的Hash值,最后在finished包会生产一个12位的验签码,对方会校验该验签码是否一致。

将握手协议前增加记录协议的版本号和ContentType。

outgoingMessages.AddHandshakeMessage(outgoingMessage);
public void AddHandshakeMessage(NetMQMessage message)
{
    m_messages.Add(m_secureChannel.InternalEncryptAndWrapMessage(ContentType.Handshake, message));
}
internal NetMQMessage InternalEncryptAndWrapMessage(ContentType contentType, NetMQMessage plainMessage)
{
    NetMQMessage encryptedMessage = m_recordLayer.EncryptMessage(contentType, plainMessage);
    //encryptedMessage.Push(m_protocolVersion);
    encryptedMessage.Push(new[] { (byte)contentType });
    encryptedMessage.Push(m_protocolVersion);

    return encryptedMessage;
}
public NetMQMessage EncryptMessage(ContentType contentType, NetMQMessage plainMessage)
{
    if (SecurityParameters.BulkCipherAlgorithm == BulkCipherAlgorithm.Null &&
        SecurityParameters.MACAlgorithm == MACAlgorithm.Null)
    {
        return plainMessage;
    }
    ...
}

Client Hello是明文传输,因此无需加密数据。

NetMQ.Security Client Hello Record协议结构如下

ContentType (1,handshake:22)
ProtocolVersion(2:0303)
握手协议数据
    HandShakeType(ClientHello:1)
    内容
        随机数(32,4位时间+28位随机数)
        Cipher Suites长度(2)
        Cipher Suites列表

由于NetMQ数据包格式已经包含长度,因此NetMQ.Security实现TLS协议的时候把协议中的长度字段都去掉了。

第二次握手
Server Hello

TLS1.2 Server Hello的Record结构如下:

ContentType (1,handshake:22)
ProtocolVersion(2:0303)
握手协议长度:(2)
握手协议数据
    HandShakeType(Server Hello:)
    内容长度(3)
    内容
        TLS版本号(2)
        随机数(32,4位时间+28位随机数)
        SessionId长度(1)
        SessionId(0到32位)
        选择的Cipher Suite(2)
        压缩方法
        扩展长度
        扩展内容

服务端接收到客户端的连接请求后先会验证Record协议的参数是否合法。

public bool ProcessMessage(NetMQMessage incomingMessage, IList<NetMQMessage> outgoingMesssages)
{
    ContentType contentType = ContentType.Handshake;

    if (incomingMessage != null)
    {
        // Verify that the first two frames are the content-type and the protocol-version,

        NetMQFrame contentTypeFrame = incomingMessage.Pop();

        if (contentTypeFrame.MessageSize != 1)
        {
            throw new NetMQSecurityException(NetMQSecurityErrorCode.InvalidFrameLength, "wrong length for message size");
        }

        // Verify that the content-type is either handshake, or change-cipher-suit..
        contentType = (ContentType)contentTypeFrame.Buffer[0];

        if (contentType != ContentType.ChangeCipherSpec && contentType != ContentType.Handshake)
        {
            throw new NetMQSecurityException(NetMQSecurityErrorCode.InvalidContentType, "Unknown content type");
        }

        //标准的没有这个版本
        NetMQFrame protocolVersionFrame = incomingMessage.Pop();
        byte[] protocolVersionBytes = protocolVersionFrame.ToByteArray();

        if (protocolVersionBytes.Length != 2)
        {
            throw new NetMQSecurityException(NetMQSecurityErrorCode.InvalidFrameLength, "Wrong length for protocol version frame");
        }

        if (!protocolVersionBytes.SequenceEqual(m_protocolVersion))
        {
            throw new NetMQSecurityException(NetMQSecurityErrorCode.InvalidProtocolVersion, "Wrong protocol version");
        }

        if (ChangeSuiteChangeArrived)
        {
            incomingMessage = m_recordLayer.DecryptMessage(contentType, incomingMessage);
        }
    }
    ...
}

由于NetMQ.Security发送的record协议第一部分是Protorl Version(0,1),第二部分是Content Type,为了和标准的TLS格式一致,我将他们顺序换了一下,且将版本号改为(3,3)。

验证完毕后就需要对Client发来的握手数据进行处理。解析接受到的数据进行处理并生成ServerHello数据

public bool ProcessMessages(NetMQMessage incomingMessage, OutgoingMessageBag outgoingMessages)
{
    if (incomingMessage == null)
    {
        //Client Hello请求
        ...
    }

    var handshakeType = (HandshakeType)incomingMessage[0].Buffer[0];

    switch (handshakeType)
    {
        case HandshakeType.ClientHello:
            OnClientHello(incomingMessage, outgoingMessages);
            break;
        ...
    }

    m_lastReceivedMessage = handshakeType;

    return m_done;
}

private void OnClientHello(NetMQMessage incomingMessage, OutgoingMessageBag outgoingMessages)
{
    if (m_lastReceivedMessage != HandshakeType.HelloRequest || m_lastSentMessage != HandshakeType.HelloRequest)
    {
        throw new NetMQSecurityException(NetMQSecurityErrorCode.HandshakeUnexpectedMessage, "Client Hello received when expecting another message");
    }

    HashLocalAndRemote(incomingMessage);

    var clientHelloMessage = new ClientHelloMessage();
    clientHelloMessage.SetFromNetMQMessage(incomingMessage);

    SecurityParameters.ClientRandom = clientHelloMessage.RandomNumber;

    AddServerHelloMessage(outgoingMessages, clientHelloMessage.CipherSuites);

    AddCertificateMessage(outgoingMessages);

    AddServerHelloDone(outgoingMessages);
}

获取客户端传来的随机数和支持的算法簇。

clientHelloMessage.SetFromNetMQMessage(incomingMessage);

public virtual void SetFromNetMQMessage(NetMQMessage message)
{
    if (message.FrameCount == 0)
    {
        throw new NetMQSecurityException(NetMQSecurityErrorCode.InvalidFramesCount, "Malformed message");
    }

    // remove the handshake type column
    message.Pop();
}
public override void SetFromNetMQMessage(NetMQMessage message)
{
    base.SetFromNetMQMessage(message);

    if (message.FrameCount != 3)
    {
        throw new NetMQSecurityException(NetMQSecurityErrorCode.InvalidFramesCount, "Malformed message");
    }

    // get the random number
    NetMQFrame randomNumberFrame = message.Pop();
    RandomNumber = randomNumberFrame.ToByteArray();

    // get the length of the cipher-suites array
    NetMQFrame ciphersLengthFrame = message.Pop();
    int ciphersLength = BitConverter.ToInt32(ciphersLengthFrame.Buffer, 0);

    // get the cipher-suites
    NetMQFrame ciphersFrame = message.Pop();
    CipherSuites = new CipherSuite[ciphersLength];
    for (int i = 0; i < ciphersLength; i++)
    {
        CipherSuites[i] = (CipherSuite)ciphersFrame.Buffer[i * 2 + 1];
    }
}

生成服务端握手数据


AddServerHelloMessage(outgoingMessages, clientHelloMessage.CipherSuites);

private void AddServerHelloMessage(OutgoingMessageBag outgoingMessages, CipherSuite[] cipherSuites)
{
    var serverHelloMessage = new ServerHelloMessage { RandomNumber = new byte[RandomNumberLength] };
    m_rng.GetBytes(serverHelloMessage.RandomNumber);

    SecurityParameters.ServerRandom = serverHelloMessage.RandomNumber;

    // in case there is no match the server will return this default
    serverHelloMessage.CipherSuite = CipherSuite.TLS_RSA_WITH_AES_128_CBC_SHA;

    foreach (var cipherSuite in cipherSuites)
    {
        if (AllowedCipherSuites.Contains(cipherSuite))
        {
            serverHelloMessage.CipherSuite = cipherSuite;
            SetCipherSuite(cipherSuite);
            break;
        }
    }

    NetMQMessage outgoingMessage = serverHelloMessage.ToNetMQMessage();
    HashLocalAndRemote(outgoingMessage);
    outgoingMessages.AddHandshakeMessage(outgoingMessage);
    m_lastSentMessage = HandshakeType.ServerHello;
}

服务端默认支持的算法为TLS_RSA_WITH_AES_128_CBC_SHA,若客户端发送的算法服务端支持的话,则会设置双方商榷的最终算法。

生成Server Hello数据

public override NetMQMessage ToNetMQMessage()
{
    NetMQMessage message = base.ToNetMQMessage();
    message.Append(RandomNumber);
    message.Append(new byte[] { 0, (byte)CipherSuite });

    return message;
}
public virtual NetMQMessage ToNetMQMessage()
{
    NetMQMessage message = new NetMQMessage();
    message.Append(new[] { (byte)HandshakeType });

    return message;
}

NetMQ.Security Server Hello Record结构如下

ContentType (1,handshake:22)
ProtocolVersion(2:0303)
握手协议数据
    HandShakeType(ServerHello:2)
    内容
        随机数(32,4位时间+28位随机数)
        确定的Cipher Suite
Certificate

TLS1.2 Certificate的Record结构如下:

ContentType (1,handshake:22)
ProtocolVersion(2:0303)
握手协议长度:(2)
握手协议数据
    HandShakeType(Server Hello:11)
    长度(3)
    内容
        服务器公钥列表

将服务器的证书公钥发送给客户端。

AddCertificateMessage(outgoingMessages);

private void AddCertificateMessage(OutgoingMessageBag outgoingMessages)
{
    var certificateMessage = new CertificateMessage { Certificate = LocalCertificate };

    NetMQMessage outgoingMessage = certificateMessage.ToNetMQMessage();
    HashLocalAndRemote(outgoingMessage);
    outgoingMessages.AddHandshakeMessage(outgoingMessage);
    m_lastSentMessage = HandshakeType.Certificate;
}
public override NetMQMessage ToNetMQMessage()
{
    NetMQMessage message = base.ToNetMQMessage();

    message.Append(Certificate.Export(X509ContentType.Cert));

    return message;
}

目前只支持一个证书
NetMQ.Security Certificate结构如下

ContentType (1,handshake:22)
ProtocolVersion(2:0303)
握手协议数据
    HandShakeType(Certificate:11)
    内容
        服务器公钥

NetMQ暂时不支持ServerKeyExchange
NetMQ暂不支持客户端证书 ,即不支持发送CertificateRequest包

ChangeCipherSpec

TLS1.2 ChangeCipherSpec结构如下

ContentType (1,handshake:20)
ProtocolVersion(2:0303)
握手协议长度:(2)
握手协议数据
    ChangeCipherSpec(1)

当服务端接收到ChangeCipherSpec,表示密钥已经生成,后续操作都加密处理。

关于ChangeCipherSpec的具体解析看这里

ServerHelloDone

TLS1.2 ServerHelloDone结构如下

ContentType (1,handshake:22)
ProtocolVersion(2:0303)
握手协议长度:(2)
握手协议数据
    HandShakeType(ServerHelloDone:14)
    长度(3)
AddServerHelloDone(outgoingMessages);
private void AddServerHelloDone(OutgoingMessageBag outgoingMessages)
{
    var serverHelloDoneMessage = new ServerHelloDoneMessage();
    NetMQMessage outgoingMessage = serverHelloDoneMessage.ToNetMQMessage();
    HashLocalAndRemote(outgoingMessage);
    outgoingMessages.AddHandshakeMessage(outgoingMessage);
    m_lastSentMessage = HandshakeType.ServerHelloDone;
}
public virtual NetMQMessage ToNetMQMessage()
{
    NetMQMessage message = new NetMQMessage();
    message.Append(new[] { (byte)HandshakeType });

    return message;
}

NetMQ.Security ServerHelloDone结构如下

ContentType (1,handshake:22)
ProtocolVersion(2:0303)
握手协议数据
    HandShakeType(ServerHelloDone:14)
客户端处理

接收到数据先对数据格式进行校验,然后解析出ServerHello数据。

public bool ProcessMessages(NetMQMessage incomingMessage, OutgoingMessageBag outgoingMessages)
{
    if (incomingMessage == null)
    {
        ...
    }

    var handshakeType = (HandshakeType)incomingMessage[0].Buffer[0];

    switch (handshakeType)
    {
        case HandshakeType.ClientHello:
            OnClientHello(incomingMessage, outgoingMessages);
            break;
        case HandshakeType.ServerHello:
            OnServerHello(incomingMessage);
        case HandshakeType.Certificate:
            OnCertificate(incomingMessage);
            break;
        case HandshakeType.ServerHelloDone:
            OnServerHelloDone(incomingMessage, outgoingMessages);
            break;
            ...
    }
    ...
}

private void OnServerHelloDone(NetMQMessage incomingMessage,
            OutgoingMessageBag outgoingMessages)
{
    if (m_lastReceivedMessage != HandshakeType.Certificate || m_lastSentMessage != HandshakeType.ClientHello)
    {
        throw new NetMQSecurityException(NetMQSecurityErrorCode.HandshakeUnexpectedMessage, "Server Hello Done received when expecting another message");
    }

    HashLocalAndRemote(incomingMessage);

    var serverHelloDoneMessage = new ServerHelloDoneMessage();
    serverHelloDoneMessage.SetFromNetMQMessage(incomingMessage);

    AddClientKeyExchange(outgoingMessages);

    InvokeChangeCipherSuite();

    AddFinished(outgoingMessages);
}

从ServerHello获取服务端生成的随机数,然后获取协商好的算法簇。

serverHelloDoneMessage.SetFromNetMQMessage(incomingMessage);
public override void SetFromNetMQMessage(NetMQMessage message)
{
    base.SetFromNetMQMessage(message);

    if (message.FrameCount != 2)
    {
        throw new NetMQSecurityException(NetMQSecurityErrorCode.InvalidFramesCount, "Malformed message");
    }

    // Get the random number
    NetMQFrame randomNumberFrame = message.Pop();
    RandomNumber = randomNumberFrame.ToByteArray();

    // Get the cipher suite
    NetMQFrame cipherSuiteFrame = message.Pop();
    CipherSuite = (CipherSuite)cipherSuiteFrame.Buffer[1];
}

加载并验证服务端公钥合法性

OnCertificate(incomingMessage);
private void OnCertificate(NetMQMessage incomingMessage)
{
    if (m_lastReceivedMessage != HandshakeType.ServerHello || m_lastSentMessage != HandshakeType.ClientHello)
    {
        throw new NetMQSecurityException(NetMQSecurityErrorCode.HandshakeUnexpectedMessage, "Certificate received when expecting another message");
    }

    HashLocalAndRemote(incomingMessage);

    var certificateMessage = new CertificateMessage();
    certificateMessage.SetFromNetMQMessage(incomingMessage);
    if (!VerifyCertificate(certificateMessage.Certificate))
    {
        throw new NetMQSecurityException(NetMQSecurityErrorCode.HandshakeUnexpectedMessage, "Unable to verify certificate");
    }

    RemoteCertificate = certificateMessage.Certificate;
}

加载企业传来的公钥

certificateMessage.SetFromNetMQMessage(incomingMessage);
public override void SetFromNetMQMessage(NetMQMessage message)
{
    base.SetFromNetMQMessage(message);

    if (message.FrameCount != 1)
    {
        throw new NetMQSecurityException(NetMQSecurityErrorCode.InvalidFramesCount, "Malformed message");
    }

    NetMQFrame certificateFrame = message.Pop();

    byte[] certificateBytes = certificateFrame.ToByteArray();

    Certificate = new X509Certificate2();
    Certificate.Import(certificateBytes);
}

对证书进行校验。客户端需要安装服务端的证书文件,由于我们使用的自签名的证书,不知道为什么一直验证失败,网上搜了下别人也有这问题,暂时不管这个问题。

if (!VerifyCertificate(certificateMessage.Certificate))
{
    throw new NetMQSecurityException(NetMQSecurityErrorCode.HandshakeUnexpectedMessage, "Unable to verify certificate");
}

VerifyCertificate = c => c.Verify();

暂时不验证证书。

public void SetVerifyCertificate(VerifyCertificateDelegate verifyCertificate)
{
    m_handshakeLayer.VerifyCertificate = verifyCertificate;
}
//客户端的SecureChannel对象设置证书校验始终返回true
m_clientSecureChannel.SetVerifyCertificate(c => true);

客户端处理ServerDone

OnServerHelloDone(incomingMessage, outgoingMessages);
private void OnServerHelloDone(NetMQMessage incomingMessage,
        OutgoingMessageBag outgoingMessages)
{
    if (m_lastReceivedMessage != HandshakeType.Certificate || m_lastSentMessage != HandshakeType.ClientHello)
    {
        throw new NetMQSecurityException(NetMQSecurityErrorCode.HandshakeUnexpectedMessage, "Server Hello Done received when expecting another message");
    }

    HashLocalAndRemote(incomingMessage);

    var serverHelloDoneMessage = new ServerHelloDoneMessage();
    serverHelloDoneMessage.SetFromNetMQMessage(incomingMessage);

    AddClientKeyExchange(outgoingMessages);

    InvokeChangeCipherSuite();

    AddFinished(outgoingMessages);
}
第三次握手
ClientKeyExchange

TLS1.2 ClientKeyExchange的Record结构如下:

ContentType (1,handshake:22)
ProtocolVersion(2:0303)
握手协议长度:(2)
握手协议数据
    HandShakeType(ClientKeyExchange:16)
    长度(3)
    内容
        密钥长度(3)
        密钥

接收到服务端的ServerHelloDone之后,客户端需要继续处理第三次握手。

TLS1.2协议提到,若客户端没有发送证书,那在ServerHelloDone之后必须是ClientKeyExchange。

客户端生成一个48位的随机数称之为pre-master key,该随机数需要使用服务端的公钥进行加密,保证只有服务端才能解密出来。至此三个随机数就产生了,这三个随机数即生成对称加密密钥用于后续数据的加密,具体为什么使用三个随机数这篇文章讲的很清楚了。

AddClientKeyExchange(outgoingMessages);

private void AddClientKeyExchange(OutgoingMessageBag outgoingMessages)
{
    var clientKeyExchangeMessage = new ClientKeyExchangeMessage();

    var premasterSecret = new byte[ClientKeyExchangeMessage.PreMasterSecretLength];
    m_rng.GetBytes(premasterSecret);

    var rsa = RemoteCertificate.PublicKey.Key as RSACryptoServiceProvider;
    clientKeyExchangeMessage.EncryptedPreMasterSecret = rsa.Encrypt(premasterSecret, false);

    GenerateMasterSecret(premasterSecret);

    NetMQMessage outgoingMessage = clientKeyExchangeMessage.ToNetMQMessage();
    HashLocalAndRemote(outgoingMessage);
    outgoingMessages.AddHandshakeMessage(outgoingMessage);
    m_lastSentMessage = HandshakeType.ClientKeyExchange;
}
private void GenerateMasterSecret(byte[] preMasterSecret)
{
    var seed = new byte[RandomNumberLength*2];

    Buffer.BlockCopy(SecurityParameters.ClientRandom, 0, seed, 0, RandomNumberLength);
    Buffer.BlockCopy(SecurityParameters.ServerRandom, 0, seed, RandomNumberLength, RandomNumberLength);

    SecurityParameters.MasterSecret =
        PRF.Get(preMasterSecret, MasterSecretLabel, seed, MasterSecretLength);

    Array.Clear(preMasterSecret, 0, preMasterSecret.Length);
}
private static byte[] PRF(byte[] secret, string label, byte[] seed, int iterations)
{
    byte[] ls = new byte[label.Length + seed.Length];

    Buffer.BlockCopy(Encoding.ASCII.GetBytes(label), 0, ls, 0, label.Length);
    Buffer.BlockCopy(seed, 0, ls, label.Length, seed.Length);

    return PHash(secret, ls, iterations);
}

private static byte[] PHash(byte[] secret, byte[] seed, int iterations)
{
    using (HMACSHA256 hmac = new HMACSHA256(secret))
    {
        byte[][] a = new byte[iterations + 1][];

        a[0] = seed;

        for (int i = 0; i < iterations; i++)
        {
            a[i + 1] = hmac.ComputeHash(a[i]);
        }

        byte[] prf = new byte[iterations * 32];

        byte[] buffer = new byte[32 + seed.Length];
        Buffer.BlockCopy(seed, 0, buffer, 32, seed.Length);

        for (int i = 0; i < iterations; i++)
        {
            Buffer.BlockCopy(a[i + 1], 0, buffer, 0, 32);

            byte[] hash = hmac.ComputeHash(buffer);

            Buffer.BlockCopy(hash, 0, prf, 32 * i, 32);
        }

        return prf;
    }
}

关于HMAC算法可以看这里
NetMQ.Security 使用的是RSA加密算法,还有Diffie-Hellman算法可以看这里

将加密后的PreMasterSecret发送给服务端

NetMQMessage outgoingMessage = clientKeyExchangeMessage.ToNetMQMessage();
public override NetMQMessage ToNetMQMessage()
{
    NetMQMessage message = base.ToNetMQMessage();
    message.Append(EncryptedPreMasterSecret);

    return message;
}

NetMQ.Security ClientKeyExchange的Record结构如下:

ContentType (1,handshake:22)
ProtocolVersion(2:0303)
握手协议数据
    HandShakeType(ClientKeyExchange:16)
    内容
        密钥
key计算

关于key计算的算法在这里,下面是具体的实现。

InvokeChangeCipherSuite();
private void InvokeChangeCipherSuite()
{
    CipherSuiteChange?.Invoke(this, EventArgs.Empty);
}
private void OnCipherSuiteChangeFromHandshakeLayer(object sender, EventArgs e)
{
    NetMQMessage changeCipherMessage = new NetMQMessage();
    changeCipherMessage.Append(new byte[] { 1 });

    m_outgoingMessageBag.AddCipherChangeMessage(changeCipherMessage);

    m_recordLayer.SecurityParameters = m_handshakeLayer.SecurityParameters;

    m_recordLayer.InitalizeCipherSuite();
}

public void InitalizeCipherSuite()
{
    byte[] clientMAC;
    byte[] serverMAC;
    byte[] clientEncryptionKey;
    byte[] serverEncryptionKey;

    GenerateKeys(out clientMAC, out serverMAC, out clientEncryptionKey, out serverEncryptionKey);

    if (SecurityParameters.BulkCipherAlgorithm == BulkCipherAlgorithm.AES)
    {
        m_decryptionBulkAlgorithm = new AesCryptoServiceProvider
        {
            Padding = PaddingMode.None,
            KeySize = SecurityParameters.EncKeyLength*8,
            BlockSize = SecurityParameters.BlockLength*8
        };

        m_encryptionBulkAlgorithm = new AesCryptoServiceProvider
        {
            Padding = PaddingMode.None,
            KeySize = SecurityParameters.EncKeyLength*8,
            BlockSize = SecurityParameters.BlockLength*8
        };

        if (SecurityParameters.Entity == ConnectionEnd.Client)
        {
            m_encryptionBulkAlgorithm.Key = clientEncryptionKey;
            m_decryptionBulkAlgorithm.Key = serverEncryptionKey;
        }
        else
        {
            m_decryptionBulkAlgorithm.Key = clientEncryptionKey;
            m_encryptionBulkAlgorithm.Key = serverEncryptionKey;
        }
    }
    else
    {
        m_decryptionBulkAlgorithm = m_encryptionBulkAlgorithm = null;
    }

    if (SecurityParameters.MACAlgorithm == MACAlgorithm.HMACSha1)
    {
        if (SecurityParameters.Entity == ConnectionEnd.Client)
        {
            m_encryptionHMAC = new HMACSHA1(clientMAC);
            m_decryptionHMAC = new HMACSHA1(serverMAC);
        }
        else
        {
            m_encryptionHMAC = new HMACSHA1(serverMAC);
            m_decryptionHMAC = new HMACSHA1(clientMAC);
        }
    }
    else if (SecurityParameters.MACAlgorithm == MACAlgorithm.HMACSha256)
    {
        if (SecurityParameters.Entity == ConnectionEnd.Client)
        {
            m_encryptionHMAC = new HMACSHA256(clientMAC);
            m_decryptionHMAC = new HMACSHA256(serverMAC);
        }
        else
        {
            m_encryptionHMAC = new HMACSHA256(serverMAC);
            m_decryptionHMAC = new HMACSHA256(clientMAC);
        }
    }
    else
    {
        m_encryptionHMAC = m_decryptionHMAC = null;
    }
}
private void GenerateKeys(
    out byte[] clientMAC, out byte[] serverMAC,
    out byte[] clientEncryptionKey, out byte[] serverEncryptionKey)
{
    byte[] seed = new byte[HandshakeLayer.RandomNumberLength * 2];

    Buffer.BlockCopy(SecurityParameters.ServerRandom, 0, seed, 0, HandshakeLayer.RandomNumberLength);
    Buffer.BlockCopy(SecurityParameters.ClientRandom, 0, seed,
        HandshakeLayer.RandomNumberLength, HandshakeLayer.RandomNumberLength);

    int length = (SecurityParameters.FixedIVLength +
                    SecurityParameters.EncKeyLength + SecurityParameters.MACKeyLength) * 2;

    if (length > 0)
    {
        byte[] keyBlock = PRF.Get(SecurityParameters.MasterSecret,
                                                    KeyExpansion, seed, length);

        clientMAC = new byte[SecurityParameters.MACKeyLength];
        Buffer.BlockCopy(keyBlock, 0, clientMAC, 0, SecurityParameters.MACKeyLength);
        int pos = SecurityParameters.MACKeyLength;

        serverMAC = new byte[SecurityParameters.MACKeyLength];
        Buffer.BlockCopy(keyBlock, pos, serverMAC, 0, SecurityParameters.MACKeyLength);
        pos += SecurityParameters.MACKeyLength;

        clientEncryptionKey = new byte[SecurityParameters.EncKeyLength];
        Buffer.BlockCopy(keyBlock, pos, clientEncryptionKey, 0, SecurityParameters.EncKeyLength);
        pos += SecurityParameters.EncKeyLength;

        serverEncryptionKey = new byte[SecurityParameters.EncKeyLength];
        Buffer.BlockCopy(keyBlock, pos, serverEncryptionKey, 0, SecurityParameters.EncKeyLength);
    }
    else
    {
        clientMAC = serverMAC = clientEncryptionKey = serverEncryptionKey = null;
    }
}
ClientFinish

TLS1.2 ClientFinish的Record结构如下:

ContentType (1,handshake:22)
ProtocolVersion(2:0303)
握手协议长度:(2)
握手协议数据
    HandShakeType(finished:20)
    VerifyData
private void AddFinished(OutgoingMessageBag outgoingMessages)
{
    m_localHash.TransformFinalBlock(EmptyArray<byte>.Instance, 0, 0);

    byte[] seed = m_localHash.Hash;
#if NET40
    m_localHash.Dispose();
#endif
    m_localHash = null;

    var label = SecurityParameters.Entity == ConnectionEnd.Server ? ServerFinishedLabel : ClientFinshedLabel;

    var finishedMessage = new FinishedMessage
    {
        VerifyData = PRF.Get(SecurityParameters.MasterSecret, label, seed, FinishedMessage.VerifyDataLength)
    };

    NetMQMessage outgoingMessage = finishedMessage.ToNetMQMessage();
    outgoingMessages.AddHandshakeMessage(outgoingMessage);
    m_lastSentMessage = HandshakeType.Finished;

    if (SecurityParameters.Entity == ConnectionEnd.Client)
    {
        HashRemote(outgoingMessage);
    }
}

NetMQMessage outgoingMessage = finishedMessage.ToNetMQMessage();
public override NetMQMessage ToNetMQMessage()
{
    NetMQMessage message = base.ToNetMQMessage();
    message.Append(VerifyData);

    return message;
}

客户端和服务端会对对方发来的VerifyData进行校验。
关于finished报文的信息可以看这里

NetMQ.Security ClientFinish的Record结构如下:

ContentType (1,handshake:22)
ProtocolVersion(2:0303)
握手协议数据
    HandShakeType(finished:20)
    VerifyData
服务端接收客户端finished

服务端和客户端的结构一致。

OnFinished(incomingMessage, outgoingMessages);
private void OnFinished(NetMQMessage incomingMessage, OutgoingMessageBag outgoingMessages)
{
    if (
        (SecurityParameters.Entity == ConnectionEnd.Client &&
            (!m_secureChannel.ChangeSuiteChangeArrived ||
            m_lastReceivedMessage != HandshakeType.ServerHelloDone || m_lastSentMessage != HandshakeType.Finished)) ||
        (SecurityParameters.Entity == ConnectionEnd.Server &&
            (!m_secureChannel.ChangeSuiteChangeArrived ||
            m_lastReceivedMessage != HandshakeType.ClientKeyExchange || m_lastSentMessage != HandshakeType.ServerHelloDone)))
    {
        throw new NetMQSecurityException(NetMQSecurityErrorCode.HandshakeUnexpectedMessage, "Finished received when expecting another message");
    }

    if (SecurityParameters.Entity == ConnectionEnd.Server)
    {
        HashLocal(incomingMessage);
    }

    var finishedMessage = new FinishedMessage();
    finishedMessage.SetFromNetMQMessage(incomingMessage);

    m_remoteHash.TransformFinalBlock(EmptyArray<byte>.Instance, 0, 0);

    byte[] seed = m_remoteHash.Hash;

#if NET40
    m_remoteHash.Dispose();
#else
    m_remoteHash.Clear();
#endif
    m_remoteHash = null;

    var label = SecurityParameters.Entity == ConnectionEnd.Client ? ServerFinishedLabel : ClientFinshedLabel;

    var verifyData = PRF.Get(SecurityParameters.MasterSecret, label, seed, FinishedMessage.VerifyDataLength);

    if (!verifyData.SequenceEqual(finishedMessage.VerifyData))
    {
        throw new NetMQSecurityException(NetMQSecurityErrorCode.HandshakeVerifyData, "peer verify data wrong");
    }

    if (SecurityParameters.Entity == ConnectionEnd.Server)
    {
        AddFinished(outgoingMessages);
    }

    m_done = true;
}

m_remoteHash.TransformFinalBlock(EmptyArray<byte>.Instance, 0, 0);会初始化一个32字节的字节数组当作seed

finishedMessage.SetFromNetMQMessage(incomingMessage);
public override void SetFromNetMQMessage(NetMQMessage message)
{
    base.SetFromNetMQMessage(message);

    if (message.FrameCount != 1)
    {
        throw new NetMQSecurityException(NetMQSecurityErrorCode.InvalidFramesCount, "Malformed message");
    }

    NetMQFrame verifyDataFrame = message.Pop();

    VerifyData = verifyDataFrame.ToByteArray();
}
第四次握手
ServerFinish
AddFinished(outgoingMessages);
private void AddFinished(OutgoingMessageBag outgoingMessages)
{
    m_localHash.TransformFinalBlock(EmptyArray<byte>.Instance, 0, 0);

    byte[] seed = m_localHash.Hash;
#if NET4
    m_localHash.Dispose();
#endif
    m_localHash = null;

    var label = SecurityParameters.Entity == ConnectionEnd.Server ? ServerFinishedLabel : ClientFinshedLabel;

    var finishedMessage = new FinishedMessage
    {
        VerifyData = PRF.Get(SecurityParameters.MasterSecret, label, seed, FinishedMessage.VerifyDataLength)
    };

    NetMQMessage outgoingMessage = finishedMessage.ToNetMQMessage();
    outgoingMessages.AddHandshakeMessage(outgoingMessage);
    m_lastSentMessage = HandshakeType.Finished;

    if (SecurityParameters.Entity == ConnectionEnd.Client)
    {
        HashRemote(outgoingMessage);
    }
}
客户端接收服务端Finished

处理和上面服务端处理一致。只是不再发送finished包。至此,四次握手完成,后面就是对数据进行加密和解密。

数据传输

ApplicationData

TLS1.2 ApplicationData的Record结构如下:

ContentType (1,ApplicationData:23)
ProtocolVersion(2:0303)
长度:(2)
加密数据
    向量长度(1)
    向量
    SeqNum(8)
    加密数据列表
        加密数据长度(2)
        加密数据

数据上层也是Record协议。

NetMQ.Security ApplicationData的Record结构如下:

ContentType (1,ApplicationData:23)
ProtocolVersion(2:0303)
加密数据
    向量
    SeqNum
    加密数据列表
数据加密
public NetMQMessage EncryptApplicationMessage([NotNull] NetMQMessage plainMessage)
{
    ...
    return InternalEncryptAndWrapMessage(ContentType.ApplicationData, plainMessage);
}
public NetMQMessage EncryptMessage(ContentType contentType, NetMQMessage plainMessage)
{
    ...
    NetMQMessage cipherMessage = new NetMQMessage();

    using (var encryptor = m_encryptionBulkAlgorithm.CreateEncryptor())
    {
        ulong seqNum = GetAndIncreaseSequneceNumber();
        byte[] seqNumBytes = BitConverter.GetBytes(seqNum);

        var iv = GenerateIV(encryptor, seqNumBytes);
        cipherMessage.Append(iv);

        // including the frame number in the message to make sure the frames are not reordered
        int frameIndex = 0;

        // the first frame is the sequence number and the number of frames to make sure frames was not removed
        byte[] frameBytes = new byte[12];
        Buffer.BlockCopy(seqNumBytes, 0, frameBytes, 0, 8);
        Buffer.BlockCopy(BitConverter.GetBytes(plainMessage.FrameCount), 0, frameBytes, 8, 4);

        byte[] cipherSeqNumBytes = EncryptBytes(encryptor, contentType, seqNum, frameIndex, frameBytes);
        cipherMessage.Append(cipherSeqNumBytes);

        frameIndex++;

        foreach (NetMQFrame plainFrame in plainMessage)
        {
            byte[] cipherBytes = EncryptBytes(encryptor, contentType, seqNum, frameIndex, plainFrame.ToByteArray());
            cipherMessage.Append(cipherBytes);

            frameIndex++;
        }

        return cipherMessage;
    }
}
数据解密
public NetMQMessage DecryptApplicationMessage([NotNull] NetMQMessage cipherMessage)
{
    ...
    return m_recordLayer.DecryptMessage(ContentType.ApplicationData, cipherMessage);
}
public NetMQMessage DecryptMessage(ContentType contentType, NetMQMessage cipherMessage)
{
    ...
    NetMQFrame ivFrame = cipherMessage.Pop();

    m_decryptionBulkAlgorithm.IV = ivFrame.ToByteArray();

    using (var decryptor = m_decryptionBulkAlgorithm.CreateDecryptor())
    {
        NetMQMessage plainMessage = new NetMQMessage();

        NetMQFrame seqNumFrame = cipherMessage.Pop();

        byte[] frameBytes;
        byte[] seqNumMAC;
        byte[] padding;

        DecryptBytes(decryptor, seqNumFrame.ToByteArray(), out frameBytes, out seqNumMAC, out padding);

        ulong seqNum = BitConverter.ToUInt64(frameBytes, 0);
        int frameCount = BitConverter.ToInt32(frameBytes, 8);

        int frameIndex = 0;

        ValidateBytes(contentType, seqNum, frameIndex, frameBytes, seqNumMAC, padding);

        if (CheckReplayAttack(seqNum))
        {
            throw new NetMQSecurityException(NetMQSecurityErrorCode.ReplayAttack,
                            "Message already handled or very old message, might be under replay attack");
        }

        if (frameCount != cipherMessage.FrameCount)
        {
            throw new NetMQSecurityException(NetMQSecurityErrorCode.EncryptedFramesMissing, "Frames was removed from the encrypted message");
        }

        frameIndex++;

        foreach (NetMQFrame cipherFrame in cipherMessage)
        {
            byte[] data;
            byte[] mac;

            DecryptBytes(decryptor, cipherFrame.ToByteArray(), out data, out mac, out padding);
            ValidateBytes(contentType, seqNum, frameIndex, data, mac, padding);

            frameIndex++;

            plainMessage.Append(data);
        }

        return plainMessage;
    }
}

NetMQ.Security目前只支持AES加密解密。

相关文献

  1. Overview of SSL/TLS Encryption
  2. SSL/TLS协议运行机制的概述
  3. 图解SSL/TLS协议
  4. The Transport Layer Security (TLS) Protocol Version 1.2
  5. TLS/SSL报文格式探究
  6. Traffic Analysis of an ssl/tls session

20191127212134.png
微信扫一扫二维码关注订阅号杰哥技术分享
本文地址:https://www.cnblogs.com/Jack-Blog/p/9015783.html
作者博客:杰哥很忙
欢迎转载,请在明显位置给出出处及链接


  1. Big-Endian:将高序字节存储在起始地址(高位编址) ↩︎

  2. Little-Endian:将低序字节存储在起始地址(低位编址) ↩︎

posted @ 2018-05-09 18:28  杰哥很忙  阅读(1187)  评论(2编辑  收藏  举报