DBA日常维护的SQL脚本
--1、查询碎片程度高的表
--条件为什么block>100,因为一些很小的表,只有几行数据实际大小很小,但是block一次性分配就是5个(11g开始默认一次性分配1M的block大小了,见create table storged的NEXT参数),5个block相对于几行小表数据来说就相差太大了。
--算法中/0.9是因为块的pfree一般为10%,所以一个块最多只用了90%,而且一行数据大于8KB时容易产生行链接,把一行分片存储,一样的一个块连90%都用不满、
--AVG_ROW_LEN还是比较准的,比如个人实验情况一表6个字段,一个number,其他5个都是char(100)但是实际数据都是’1111111’7位,AVG_ROW_LEN显示依然为513
SELECT TABLE_NAME,
(BLOCKS * 8192 / 1024 / 1024) "理论大小M",
(NUM_ROWS * AVG_ROW_LEN / 1024 / 1024 / 0.9) "实际大小M",
round((NUM_ROWS * AVG_ROW_LEN / 1024 / 1024 / 0.9) /
(BLOCKS * 8192 / 1024 / 1024),
3) * 100 || '%' "实际使用率%"
FROM USER_TABLES
where blocks > 100
and (NUM_ROWS * AVG_ROW_LEN / 1024 / 1024 / 0.9) /
(BLOCKS * 8192 / 1024 / 1024) < 0.3
order by (NUM_ROWS * AVG_ROW_LEN / 1024 / 1024 / 0.9) /
(BLOCKS * 8192 / 1024 / 1024) desc;
--2、查询索引碎片的比例
select name,
del_lf_rows,
lf_rows,
round(del_lf_rows / decode(lf_rows, 0, 1, lf_rows) * 100, 0) || '%' frag_pct
from index_stats
where round(del_lf_rows / decode(lf_rows, 0, 1, lf_rows) * 100, 0) > 30;
--3、集群因子clustering_factor高的表 集群因子越接近块数越好,接近行数则说明索引列的列值相等的行分布极度散列,可能不走索引扫描而走全表扫描
select tab.table_name,
tab.blocks,
tab.num_rows,
ind.index_name,
ind.clustering_factor,
round(nvl(ind.clustering_factor, 1) /
decode(tab.num_rows, 0, 1, tab.num_rows),
3) * 100 || '%' "集群因子接近行数"
from user_tables tab, user_indexes ind
where tab.table_name = ind.table_name
and tab.blocks > 100
and nvl(ind.clustering_factor, 1) /
decode(tab.num_rows, 0, 1, tab.num_rows) between 0.35 and 3;
--4、根据sid查spid或根据spid查sid
select s.sid, s.serial#, s.LOGON_TIME, s.machine, p.spid, p.terminal
from v$session s, v$process p
where s.paddr = p.addr
and s.sid = &sid
or p.spid = &spid;
--5、根据sid查看具体的sql语句
select username, sql_text, machine, osuser
from v$session a, v$sqltext_with_newlines b
where DECODE(a.sql_hash_value, 0, prev_hash_value, sql_hash_value) =
b.hash_value
and a.sid = &sid
order by piece;
6、根据spid查询具体的sql语句
select ss.SID,
pr.SPID,
ss.action,
sa.SQL_FULLTEXT,
ss.TERMINAL,
ss.PROGRAM,
ss.SERIAL#,
ss.USERNAME,
ss.STATUS,
ss.OSUSER,
ss.last_call_et
from v$process pr, v$session ss, v$sqlarea sa
where ss.status = 'ACTIVE'
and ss.username is not null
and pr.ADDR = ss.PADDR
and ss.SQL_ADDRESS = sa.ADDRESS
and ss.SQL_HASH_VALUE = sa.HASH_VALUE
and pr.spid = &spid;
--7、查看历史session_id的SQL来自哪个IP (当然这是个误解,都是历史的了,怎么可能还查到spid,其实查看trace文件名就可以知道spid,trace文件里面有sid和具体sql,如果trace存在incident,那trace就看不到具体sql,但是可以在incident文件中看到具体的sql,如DW_ora_17751.trc中17751就是spid,里面有这样的内容Incident 115 created, dump file: /XX/incident/incdir_115/DW_ora_17751_i115.trc,那么在DW_ora_17751_i115.trc就可以看到具体的sql语句)
DB_ora_29349.trc中出现如下 ** * SESSION ID :(5057.12807) 2016 - 10 - 26 14 :45 :52.726 通过表V$ACTIVE_SESSION_HISTORY来查,如下
select a.sql_id, a.machine, a.*
from V$ACTIVE_SESSION_HISTORY a
where a.session_id = &session_id
and a.SESSION_SERIAL# = &serial;
--查询上面的machine的IP是多少
select s.sid, s.serial#, s.LOGON_TIME, s.machine, p.spid, p.terminal
from v$session s, v$process p
where s.paddr = p.addr
and s.machine = 'localhost';
通过上面的spid在oracle服务器上执行netstat - anp | grep spid即可 oracle@dwdb trace $ netstat - anp | grep 17630 tcp 210 0 192.168.64.228 :11095 192.168.21.16 :1521 ESTABLISHED 17630 / oracleDB tcp 0 0 ::ffff :192.168.64.228 :1521 ::ffff :192.168.64.220 :59848 ESTABLISHED 17630 / oracleDB 出现两个,说明来自220,连接了228数据库服务器,但是又通过228服务器的dblink去连接了16服务器
--8、查询DML死锁会话sid,及引起死锁的堵塞者会话blocking_session
select sid,
blocking_session,
LOGON_TIME,
sql_id,
status,
event,
seconds_in_wait,
state,
BLOCKING_SESSION_STATUS
from v$session
where event like 'enq%'
and state = 'WAITING'
and BLOCKING_SESSION_STATUS = 'VALID'
BLOCKING_SESSION :Session identifier of the blocking session. This
column is valid only if BLOCKING_SESSION_STATUS has the value
VALID.
可以在v$session.LOGON_TIME上看到引起死锁的堵塞者会话比等待者要早
如果遇到RAC环境,一定要用gv$来查,并且执行alter system kill
session 'sid,serial#' 要到RAC对应的实例上去执行 或如下也可以
select (select username from v$session where sid = a.sid) blocker,
a.sid,
a.id1,
a.id2,
' is blocking ' "IS BLOCKING",
(select username from v$session where sid = b.sid) blockee,
b.sid
from v$lock a, v$lock b
where a.block = 1
and b.request > 0
and a.id1 = b.id1
and a.id2 = b.id2;
--9、查询DDL锁的sql
SELECT sid, event, p1raw, seconds_in_wait, wait_time
FROM sys.v_$session_wait
WHERE event like 'library cache %' p1raw结果为 '0000000453992440'
SELECT s.sid, kglpnmod "Mode", kglpnreq "Req", s.LOGON_TIME
FROM x$kglpn p, v$session s
WHERE p.kglpnuse = s.saddr
AND kglpnhdl = '0000000453992440';
结果为671 0 3 2011 - 11 - 1 12 :00 :00 525 2 0 2011 - 11 - 4 12 :00 :00
--10、查询锁住的DDL对象
select d.session_id, s.SERIAL#, d.name
from dba_ddl_locks d, v$session s
where d.owner = 'MKLMIGEM'
and d.SESSION_ID = s.sid;
--11、查询当前正在执行的sql
SELECT s.sid,
s.serial#,
s.username,
spid,
v$sql.sql_id,
machine,
s.terminal,
s.program,
sql_text
FROM v$process, v$session s, v$sql
WHERE addr = paddr
and s.sql_id = v$sql.sql_id
AND sql_hash_value = hash_value;
--12、查询正在执行的SCHEDULER_JOB
select owner, job_name, sid, b.SERIAL#, b.username, spid
from ALL_SCHEDULER_RUNNING_JOBS, v$session b, v$process
where session_id = sid
and paddr = addr;
--13、查询正在执行的dbms_job
select job, b.sid, b.SERIAL#, b.username, spid
from DBA_JOBS_RUNNING a, v$session b, v$process
where a.sid = b.sid
and paddr = addr;
--14、查询一个会话session、process平均消耗多少内存,查看下面avg_used_M值
select round(sum(pga_used_mem) / 1024 / 1024, 0) total_used_M,
round(sum(pga_used_mem) / count(1) / 1024 / 1024, 0) avg_used_M,
round(sum(pga_alloc_mem) / 1024 / 1024, 0) total_alloc_M,
round(sum(pga_alloc_mem) / count(1) / 1024 / 1024, 0) avg_alloc_M
from v$process;
--15、TOP 10 执行次数排序
select *
from (select executions, username, PARSING_USER_ID, sql_id, sql_text
from v$sql, dba_users
where user_id = PARSING_USER_ID
order by executions desc)
where rownum <= 5;
--16、TOP 10 物理读排序 (不要使用DISK_READS/ EXECUTIONS来排序,因为任何一条语句不管执行几次都会耗逻辑读和cpu,可能不会耗物理读(遇到LRU还会耗物理读,LRU规则是执行最不频繁的且最后一次执行时间距离现在最久远的就会被交互出buffer cache),是因为buffer cache存放的是数据块,去数据块里找行一定会消耗cpu和逻辑读的。Shared pool执行存放sql的解析结果,sql执行的时候只是去share pool中找hash value,如果有匹配的就是软解析。所以物理读逻辑读是在buffer cache中,软解析硬解析是在shared pool)
select *
from (select DISK_READS,
username,
PARSING_USER_ID,
sql_id,
ELAPSED_TIME / 1000000,
sql_text
from v$sql, dba_users
where user_id = PARSING_USER_ID
order by DISK_READS desc)
where rownum <= 5;
--17、TOP 10 逻辑读排序 (不要使用BUFFER_GETS/ EXECUTIONS来排序,原因同16)
select *
from (select BUFFER_GETS,
username,
PARSING_USER_ID,
sql_id,
ELAPSED_TIME / 1000000,
sql_text
from v$sql, dba_users
where user_id = PARSING_USER_ID
order by BUFFER_GETS desc)
where rownum <= 5;
--18、TOP 10 CPU排序 (不要使用CPU_TIME/ EXECUTIONS来排序,原因同16)
select *
from (select CPU_TIME / 1000000,
username,
PARSING_USER_ID,
sql_id,
ELAPSED_TIME / 1000000,
sql_text
from v$sql, dba_users
where user_id = PARSING_USER_ID
order by CPU_TIME / 1000000 desc)
where rownum <= 5;
--19、查询等待事件
select event,
sum(decode(wait_time, 0, 0, 1)) "之前等待次数",
sum(decode(wait_time, 0, 1, 0)) "正在等待次数",
count(*)
from v$session_wait
group by event
order by 4 desc
--20、查询当前正在消耗temp空间的sql语句
Select distinct se.username,
se.sid,
su.blocks * to_number(rtrim(p.value)) / 1024 / 1024 as space_G,
su.tablespace,
sql_text
from V$TEMPSEG_USAGE su, v$parameter p, v$session se, v$sql s
where p.name = 'db_block_size'
and su.session_addr = se.saddr
and su.sqlhash = s.hash_value
and su.sqladdr = s.address;
--21、查询需要使用绑定变量的sql,10G以后推荐第二种
(任何一条执行过的语句不管执行了几次在V$SQL中都只有一条记录,V$SQL中会记录执行了几次。两条一模一样的语句但是在不同的schema下执行的两种结果,如select * from t1.test在sye、system下执行则V$SQL只有一条记录(谁先执行则PARSING_SCHEMA_NAME显示谁) 。如在sys和system都执行select * from test则V$SQL中有两条记录,两条记录的CHILD_NUMBER和PARSING_SCHEMA_NAME不一样。同一个用户下执行一样的语句如果大小写不一样或加了hint的话则会出现多个V$SQL记录,说明V$SQL对应的sql语句必须一模一样,如果alter system flush shared_pool(主站慎用)后再执行一样的语句,发现语句在V$SQL中的SQL_ID和HASH_VALUE与之前的一样,说明SQL_ID和HASH_VALUE应该是oracle自己的一套算法来的,只是根据sql语句内容来进行转换,sql语句不变则SQL_ID和HASH_VALUE也不变。)
--第一种
select *
from (select count(*), sql_id, substr(sql_text, 1, 40)
from v$sql
group by sql_id, substr(sql_text, 1, 40)
having count(*) > 10
order by count(*) desc)
where rownum < 10
--第二种
count(1) > 10表示类语句运行了10次以上
select sql_id, FORCE_MATCHING_SIGNATURE, sql_text
from v$SQL
where FORCE_MATCHING_SIGNATURE in
(select /*+ unnest */
FORCE_MATCHING_SIGNATURE
from v$sql
where FORCE_MATCHING_SIGNATURE > 0
and FORCE_MATCHING_SIGNATURE !=
EXACT_MATCHING_SIGNATURE
group by FORCE_MATCHING_SIGNATURE
having count(1) > 10)
--22、查看数据文件可用百分比
select b.file_id,
b.tablespace_name,
b.file_name,
b.AUTOEXTENSIBLE,
ROUND(b.bytes / 1024 / 1024 / 1024, 2) || 'G' "文件总容量",
ROUND((b.bytes - sum(nvl(a.bytes, 0))) / 1024 / 1024 / 1024,
2) || 'G' "文件已用容量",
ROUND(sum(nvl(a.bytes, 0)) / 1024 / 1024 / 1024, 2) || 'G' "文件可用容量",
ROUND(sum(nvl(a.bytes, 0)) / (b.bytes), 2) * 100 || '%' "文件可用百分比"
from dba_free_space a, dba_data_files b
where a.file_id = b.file_id
group by b.tablespace_name,
b.file_name,
b.file_id,
b.bytes,
b.AUTOEXTENSIBLE
order by b.tablespace_name;
--23、查看数据文件可用百分比
select b.file_id,
b.tablespace_name,
b.file_name,
b.AUTOEXTENSIBLE,
ROUND(b.MAXBYTES / 1024 / 1024 / 1024, 2) || 'G' "文件最大可用总容量",
ROUND((b.bytes - sum(nvl(a.bytes, 0))) / 1024 / 1024 / 1024, 2) || 'G' "文件已用容量",
ROUND(((b.MAXBYTES / 1024 / 1024 / 1024) -
((b.bytes - sum(nvl(a.bytes, 0))) / 1024 / 1024 / 1024)) /
(b.MAXBYTES / 1024 / 1024 / 1024),
2) * 100 || '%' "文件可用百分比"
from dba_free_space a, dba_data_files b
where a.file_id = b.file_id
and b.file_id > 4
group by b.tablespace_name,
b.file_name,
b.file_id,
b.bytes,
b.AUTOEXTENSIBLE,
b.MAXBYTES
order by b.tablespace_name;
--24、查看表空间可用百分比
select b.tablespace_name,
a.total,
b.free,
round((b.free / a.total) * 100) "% Free"
from (select tablespace_name, sum(bytes / (1024 * 1024)) total
from dba_data_files
group by tablespace_name) a,
(select tablespace_name, round(sum(bytes / (1024 * 1024))) free
from dba_free_space
group by tablespace_name) b
WHERE a.tablespace_name = b.tablespace_name
order by "% Free";
--25、查看临时表空间使用率
SELECT temp_used.tablespace_name,
total,
used,
total - used as "Free",
round(nvl(total - used, 0) * 100 / total, 3) "Free percent"
FROM (SELECT tablespace_name, SUM(bytes_used) / 1024 / 1024 used
FROM GV_$TEMP_SPACE_HEADER
GROUP BY tablespace_name) temp_used,
(SELECT tablespace_name, SUM(bytes) / 1024 / 1024 total
FROM dba_temp_files
GROUP BY tablespace_name) temp_total
WHERE temp_used.tablespace_name = temp_total.tablespace_name;
--26、查询undo表空间使用情况
select tablespace_name, status, sum(bytes) / 1024 / 1024 M
from dba_undo_extents
group by tablespace_name, status;
--27、查看ASM磁盘组使用率
select name,
round(total_mb / 1024) "总容量",
round(free_mb / 1024) "空闲空间",
round((free_mb / total_mb) * 100) "可用空间比例"
from gv$asm_diskgroup;
--28、统计每个用户使用表空间率
SELECT c.owner "用户",
a.tablespace_name "表空间名",
total / 1024 / 1024 "表空间大小M",
free / 1024 / 1024 "表空间剩余大小M",
(total - free) / 1024 / 1024 "表空间使用大小M",
Round((total - free) / total, 4) * 100 "表空间总计使用率 %",
c.schemas_use / 1024 / 1024 "用户使用表空间大小M",
round((schemas_use) / total, 4) * 100 "用户使用表空间率 %"
FROM (SELECT tablespace_name, Sum(bytes) free
FROM DBA_FREE_SPACE
GROUP BY tablespace_name) a,
(SELECT tablespace_name, Sum(bytes) total
FROM DBA_DATA_FILES
GROUP BY tablespace_name) b,
(Select owner, Tablespace_Name, Sum(bytes) schemas_use
From Dba_Segments
Group By owner, Tablespace_Name) c
WHERE a.tablespace_name = b.tablespace_name
and a.tablespace_name = c.Tablespace_Name
order by "用户", "表空间名";
--29、查看闪回区\快速恢复区空间使用率
select sum(percent_space_used) || '%' "已使用空间比例"
from V$RECOVERY_AREA_USAGE;
--30、查看僵死进程,分两种
alter system kill session
--执行则session即标记为KILLED,但是如果会话产生的数据量大则这个kill可能会比较久,在这个过程中session标记为KILLED但是这个会话还在V$session中,则V$session.paddr还在,所以可以匹配到V$process.addr,所以process进程还在;当kill过程执行完毕,则这个会话即不在V$session中会话不在的
select *
from v$process
where addr not in (select paddr from v$session)
and pid not in (1, 17, 18)
--会话还在的,但是会话标记为killed
select *
from v$process
where addr in
(select paddr from v$session where status = 'KILLED');
--再根据上述结果中的SPID通过如下命令可以查看到process的启动时间
ps auxw | head - 1;
ps auxw | grep SPID
--31、查看行迁移或行链接的表
select * From dba_tables where nvl(chain_cnt, 0) <> 0;
chain_cnt :Number of rows in the table that are chained from one data block to another or that have migrated to a new block, requiring a link to preserve the old rowid. This column is updated only after you analyze the table.
--32、数据缓冲区命中率
SELECT a.VALUE + b.VALUE logical_reads,
c.VALUE phys_reads,
round(100 * (1 - c.value / (a.value + b.value)), 2) || '%' hit_ratio
FROM v$sysstat a, v$sysstat b, v$sysstat c
WHERE a.NAME = 'db block gets'
AND b.NAME = 'consistent gets'
AND c.NAME = 'physical reads';
或
SELECT DB_BLOCK_GETS + CONSISTENT_GETS Logical_reads,
PHYSICAL_READS phys_reads,
round(100 *
(1 - (PHYSICAL_READS / (DB_BLOCK_GETS + CONSISTENT_GETS))),
2) || '%' "Hit Ratio"
FROM V$BUFFER_POOL_STATISTICS
WHERE NAME = 'DEFAULT';
--33、共享池命中率 以下两者应该都可以,看个人怎么理解
select sum(pinhits) / sum(pins) * 100 from v$librarycache;
select sum(pinhits - reloads) / sum(pins) * 100 from v$librarycache;
--34、查询归档日志切换频率
select sequence#,
to_char(first_time, 'yyyymmdd_hh24:mi:ss') firsttime,
round((first_time - lag(first_time) over(order by first_time)) * 24 * 60,
2) minutes
from v$log_history
where first_time > sysdate - 3
order by first_time, minutes;
或
select sequence#,
to_char(first_time, 'yyyy-mm-dd hh24:mi:ss') First_time,
First_change#,
switch_change#
from v$loghist
where first_time > sysdate - 3
order by 1;
--35、查询lgwr进程写日志时每执行一次lgwr需要多少秒,在state是waiting的情况下,某个等待编号seq#下,seconds_in_wait达多少秒,就是lgwr进程写一次IO需要多少秒
select event, state, seq#, seconds_in_wait, program
from v$session
where program like '%LGWR%'
and state = 'WAITING'
--36、查询没有索引的表
Select table_name
from user_tables
where table_name not in (select table_name from user_indexes);
Select table_name
from user_tables
where table_name not in (select table_name from user_ind_columns);
--37、查询7天的db time
TH sysstat AS(
select sn.begin_interval_time begin_interval_time,
sn.end_interval_time end_interval_time,
ss.stat_name stat_name,
ss.value e_value,
lag(ss.value, 1) over(order by ss.snap_id) b_value
from dba_hist_sysstat ss, dba_hist_snapshot sn
where trunc(sn.begin_interval_time) >= sysdate - 7
and ss.snap_id = sn.snap_id
and ss.dbid = sn.dbid
and ss.instance_number = sn.instance_number
and ss.dbid = (select dbid from v$database)
and ss.instance_number = (select instance_number from v$instance)
and ss.stat_name = 'DB time')
select to_char(BEGIN_INTERVAL_TIME, 'mm-dd hh24:mi') ||
to_char(END_INTERVAL_TIME, ' hh24:mi') date_time,
stat_name,
round((e_value - nvl(b_value, 0)) /
(extract(day from(end_interval_time -
begin_interval_time)) * 24 * 60 * 60 +
extract(hour from(end_interval_time -
begin_interval_time)) * 60 * 60 +
extract(minute from(end_interval_time -
begin_interval_time)) * 60 +
extract(second from(end_interval_time -
begin_interval_time))),
0) per_sec
from sysstat
where (e_value - nvl(b_value, 0)) > 0
and nvl(b_value, 0) > 0;
--38、查询产生热块较多的对象
x$bh .tch(Touch) 表示访问次数越高,热点快竞争问题就存在
SELECT e.owner, e.segment_name, e.segment_type
FROM dba_extents e,
(SELECT *
FROM (SELECT addr, ts#, file#, dbarfil, dbablk, tch
FROM x$bh
ORDER BY tch DESC)
WHERE ROWNUM < 11) b
WHERE e.relative_fno = b.dbarfil
AND e.block_id <= b.dbablk
AND e.block_id + e.blocks > b.dbablk;
--39、导出AWR报告的SQL语句
select *
from dba_hist_snapshot
select *
from table(dbms_workload_repository.awr_report_html(DBID,
INSTANCE_NUMBER,
startsnapid,
endsnapid))
select *
from TABLE(DBMS_WORKLOAD_REPOSITORY.awr_diff_report_html(DBID,
INSTANCE_NUMBER,
startsnapid,
endsnapid,
DBID,
INSTANCE_NUMBER,
startsnapid,
endsnapid));