bzoj 2163: 复杂的大门
2163: 复杂的大门
Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 418 Solved: 259
[Submit][Status][Discuss]
Description
你去找某bm玩,到了门口才发现要打开他家的大门不是一件容易的事……
他家的大门外有n个站台,用1到n的正整数编号。你需要对每个站台访问一定次数以后大门才能开启。站台之间有m个单向的传送门,通过传送门到达另一个站台不需要花费任何代价。而如果不通过传送门,你就需要乘坐公共汽车,并花费1单位的钱。值得庆幸的是,任意两个站台之间都有公共汽车直达。
现在给你每个站台必须访问的次数Fi,对于站台i,你必须恰好访问Fi次(不能超过)。
我们用u、v、w三个参数描述一个传送门,表示从站台u到站台v有一个最多可以使用w次的传送门(不一定要使用w次)。值得注意的是,对于任意一对传送门(u1,v1)和(u2,v2),如果有u1<u2,则有v1≤v2;如果有v1<v2,则有u1≤u2;且u1=u2和v1=v2不同时成立。
你可以从任意的站台开始,从任意的站台结束。出发去开始的站台需要花费1单位的钱。你需要求出打开大门最少需要花费多少单位的钱。
Input
第一行包含两个正整数n、m,意义见题目描述。第二行包含n个正整数,第i个数表示Fi。接下来有m行,每行有三个正整数u、v、w,表示从u到v有一个可以使用w次的传送门。
Output
输出一行一个整数,表示打开大门最少花费的钱数。
Sample Input
5 5 5 5
1 2 1
3 2 1
3 4 1
Sample Output
HINT
有20%的数据满足n≤10,m≤50;对于所有的w、Fi,满足1≤w,Fi≤10。有50%的数据满足n≤1000,m≤10000。100%的数据满足1≤n≤10000,1≤m≤100000;对于所有的u、v,满足1≤u,v≤n,u≠v;对于所有的w、Fi,满足1≤w,Fi≤50000。以上的每类数据中都存在50%的数据满足对于所有的w、Fi,有w=Fi=1。
貌似这就是最小路径覆盖的一个点可以被经过多次的版本啊。
最小路径覆盖是要求选尽量少的路径,使得每个点都恰好在一条路径上(也就是路径之间没有交点)。。。。
那么本题就是 要求选尽量少的路径,使得所有点i都满足 i 恰好在 F[i] 条路径上。。。。。
做法是一样的嘛。。。左边一排出点,右边一排入点,因为题目中保证了没有环(那个边的关系就是这个意思),然后Fi的和减去最大流就是答案(也就是会有多少路径起点)
#include<bits/stdc++.h> #define ll long long using namespace std; #define pb push_back const int maxn=20005; vector<int> g[maxn]; struct lines{ int to,flow,cap; }l[maxn*79]; int S,T,t=-1,d[maxn],cur[maxn]; bool v[maxn]; inline void add(int from,int to,int cap){ l[++t]=(lines){to,0,cap},g[from].pb(t); l[++t]=(lines){from,0,0},g[to].pb(t); } inline bool BFS(){ memset(v,0,sizeof(v)),v[S]=1,d[S]=0; queue<int> q; q.push(S); int x; lines e; while(!q.empty()){ x=q.front(),q.pop(); for(int i=g[x].size()-1;i>=0;i--){ e=l[g[x][i]]; if(e.flow<e.cap&&!v[e.to]) v[e.to]=1,d[e.to]=d[x]+1,q.push(e.to); } } return v[T]; } int dfs(int x,int A){ if(x==T||!A) return A; int flow=0,f,sz=g[x].size(); for(int &i=cur[x];i<sz;i++){ lines &e=l[g[x][i]]; if(d[x]+1==d[e.to]&&(f=dfs(e.to,min(A,e.cap-e.flow)))){ A-=f,flow+=f; e.flow+=f,l[g[x][i]^1].flow-=f; if(!A) break; } } return flow; } inline int max_flow(){ int an=0; while(BFS()){ memset(cur,0,sizeof(cur)); an+=dfs(S,1<<30); } return an; } int n,now,tot,m; int main(){ int uu,vv,ww; scanf("%d%d",&n,&m),S=0,T=(n<<1)|1; for(int i=1;i<=n;i++) scanf("%d",&now),add(S,i,now),add(i+n,T,now),tot+=now; for(int i=1;i<=m;i++) scanf("%d%d%d",&uu,&vv,&ww),add(uu,vv+n,ww); printf("%d\n",tot-max_flow()); return 0; }