Atcoder 3857 Median Sum
Problem Statement
You are given N integers A1, A2, ..., AN.
Consider the sums of all non-empty subsequences of A. There are 2N−1 such sums, an odd number.
Let the list of these sums in non-decreasing order be S1, S2, ..., S2N−1.
Find the median of this list, S2N−1.
Constraints
- 1≤N≤2000
- 1≤Ai≤2000
- All input values are integers.
Input
Input is given from Standard Input in the following format:
N
A1 A2 … AN
Output
Print the median of the sorted list of the sums of all non-empty subsequences of A.
Sample Input 1
3
1 2 1
Sample Output 1
2
In this case, S=(1,1,2,2,3,3,4). Its median is S4=2.
Sample Input 2
1
58
Sample Output 2
58
In this case, S=(58).
我们不妨把空集考虑进来,那么最后的答案就是 第 2^(N-1)+1 小的sum。
显然可以直接O(N^3)dp,最后可以算出和为每个数的集合有多少个。
然后考虑一下怎么优化这个算法。
我们可以发现一个集合和它的补集的和总是 所有数的和,这样我们的dp数组肯定是对称的,即最后 f[0] = f[sum of a[]] ....
所以我们如果要求中位数的话,只需要知道出现过的和的中位数就行了,暴力bitset维护,常数除以了一个32.
#include<bits/stdc++.h> #define ll long long using namespace std; const int maxn=2000; int a[maxn+5],n,now; int num[maxn*maxn+5],T; bitset<maxn*maxn+maxn> S; int main(){ scanf("%d",&n),S[0]=1; for(int i=1;i<=n;i++){ scanf("%d",&now); S|=S<<now; } for(int i=1;i<=maxn*maxn;i++) if(S[i]) num[++T]=i; printf("%d\n",num[(T+1)>>1]); return 0; }