Uva 12063 Zero and Ones

给个链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3215

题目大意是求有多少个n位二进制数,0和1的个数相等,并且是k的倍数。

这个dp一下就可以了,设f[i][j][l]为i位的mod k=j的有l个1 的数的个数。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<cstring>
#define ll long long
using namespace std;
ll f[71][105][71];
//f[i][j][k] means the number of binary_numbers,which has i digits(without 0 before the first 1)
//and k digits of 1.And it's equal to j (mod K)
int T,n,k,cnt;

inline int add(int x,int y,const int ha){
	x+=y;
	if(x>=ha) return x-ha;
	else return x;
}

inline void dp(){
    memset(f,0,sizeof(f));
    
    f[1][!(k==1)][1]=1;
    for(int i=1;i<n;i++)
        for(int j=0;j<k;j++)
            for(int l=1;l<=i;l++) if(f[i][j][l]){
            ll base=f[i][j][l];
            int to=add(j,j,k);
            
            f[i+1][to][l]+=base;
            to=add(to,1,k);
            f[i+1][to][l+1]+=base;
        }
    
}

int main(){
    scanf("%d",&T);
    while(T--){
        scanf("%d%d",&n,&k);
        printf("Case %d: ",++cnt);
        
        if((n&1)||!k){
            puts("0");
            continue;
        }
        
        dp();
        printf("%lld\n",f[n][0][n>>1]);
    }
    
    return 0;
}

  

posted @ 2018-02-20 12:00  蒟蒻JHY  阅读(230)  评论(1编辑  收藏  举报