BZOJ 3275: Number( 最小割 )

S->每个奇数,每个偶数->T各连一条边, 容量为这个数字.然后不能同时选的两个数连容量为+oo的边. 总数-最大流即是答案.

因为满足a2+b2=c2的a,b一定是一奇一偶或者两个偶数, 2偶不满足gcd=1, 所以两个数不能同时选一定是一奇一偶.

---------------------------------------------------------------------

#include<bits/stdc++.h>
 
using namespace std;
 
typedef long long ll;
 
const int maxn = 3009;
const int INF = 0x7FFFFFFF;
 
struct edge {
int to, cap;
edge *next, *rev;
} E[1000000], *pt = E, *head[maxn];
 
inline void add(int u, int v, int w) {
pt->to = v; pt->cap = w; pt->next = head[u]; head[u] = pt++;
}
inline void addedge(int u, int v, int w) {
add(u, v, w); add(v, u, 0);
head[u]->rev = head[v];
head[v]->rev = head[u];
}
 
edge *cur[maxn], *p[maxn];
int h[maxn], cnt[maxn], S, T, N;
 
int maxFlow() {
memset(cnt, 0, sizeof cnt);
memset(h, 0, sizeof h);
cnt[0] = N;
edge* e;
int flow = 0;
for(int x = S, A = INF; h[S] < N; ) {
for(e = cur[x]; e; e = e->next)
if(e->cap && h[e->to] + 1 == h[x]) break;
if(e) {
p[e->to] = cur[x] = e;
A = min(e->cap, A);
x = e->to;
if(x == T) {
for(; x != S; x = p[x]->rev->to) {
p[x]->cap -= A;
p[x]->rev->cap += A;
}
flow += A;
A = INF;
}
} else {
if(!--cnt[h[x]]) break;
h[x] = N;
for(e = head[x]; e; e = e->next) if(e->cap && h[e->to] + 1 < h[x]) {
cur[x] = e;
h[x] = h[e->to] + 1;
}
cnt[h[x]]++;
if(x != S) x = p[x]->rev->to;
}
}
return flow;
}
 
int num[maxn];
 
int gcd(int x, int y) {
return y ? gcd(y, x % y) : x;
}
 
bool check(int x, int y) {
int h = gcd(x, y);
if(h != 1) return false;
ll t = ll(x) * x + ll(y) * y;
t = (ll)sqrt(t);
if(t * t == ll(x) * x + ll(y) * y) return true;
return false;
}
 
int main() {
int n; scanf("%d", &n);
int tot = 0;
S = 0; T = n + 1; N = T + 1;
for(int i = 1; i <= n; i++) {
scanf("%d", num + i);
tot += num[i];
num[i] & 1 ? addedge(S, i, num[i]) : addedge(i, T, num[i]);
}
for(int i = 1; i <= n; i++) if(num[i] & 1)
for(int j = 1; j <= n; j++) if(!(num[j] & 1))
if(check(num[i], num[j])) addedge(i, j, INF);
printf("%d\n", tot - maxFlow());
return 0;
}

---------------------------------------------------------------------

 

 

3275: Number

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 504  Solved: 222
[Submit][Status][Discuss]

Description

有N个正整数,需要从中选出一些数,使这些数的和最大。
若两个数a,b同时满足以下条件,则a,b不能同时被选
1:存在正整数C,使a*a+b*b=c*c
2:gcd(a,b)=1

Input

第一行一个正整数n,表示数的个数。
第二行n个正整数a1,a2,?an。
 
 

Output

最大的和。
 

Sample Input

5
3 4 5 6 7



Sample Output

22


HINT

n<=3000。

Source

 

posted @ 2015-09-25 14:38  JSZX11556  阅读(253)  评论(0编辑  收藏  举报