BZOJ 1652: [Usaco2006 Feb]Treats for the Cows( dp )

 dp( L , R ) = max( dp( L + 1 , R ) + V_L * ( n - R + L ) , dp( L , R - 1 ) + V_R * ( n - R + L ) )

边界 : dp( i , i ) = V[ i ] * n

--------------------------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
 
#define rep( i , n ) for( int i = 0 ; i < n ; i++ )
#define clr( x , c ) memset( x , c , sizeof( x ) )
 
using namespace std;
 
const int maxn = 2000 + 5;
 
int d[ maxn ][ maxn ];
int V[ maxn ];
int n;
 
int dp( int l , int r ) {
int &ans = d[ l ][ r ];
if( ans != -1 )
   return ans;
   
ans = max( dp( l + 1 , r ) + ( n - r + l ) * V[ l ] , dp( l , r - 1 ) + ( n - r + l ) * V[ r ] );
return ans;
}
int main() {
// freopen( "test.in" , "r" , stdin );
clr( d , -1 );
cin >> n;
rep( i , n ) {
   scanf( "%d" , V + i );
   
   d[ i ][ i ] = n * V[ i ];
   
}
cout << dp( 0 , n - 1 ) << "\n";
return 0;
}

 

--------------------------------------------------------------------------------------------

1652: [Usaco2006 Feb]Treats for the Cows

Time Limit: 5 Sec  Memory Limit: 64 MB
Submit: 250  Solved: 199
[Submit][Status][Discuss]

Description

FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time. The treats are interesting for many reasons: * The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats. * Like fine wines and delicious cheeses, the treats improve with age and command greater prices. * The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000). * Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a. Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally? The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.

约翰经常给产奶量高的奶牛发特殊津贴,于是很快奶牛们拥有了大笔不知该怎么花的钱.为此,约翰购置了N(1≤N≤2000)份美味的零食来卖给奶牛们.每天约翰售出一份零食.当然约翰希望这些零食全部售出后能得到最大的收益.这些零食有以下这些有趣的特性:

•零食按照1..N编号,它们被排成一列放在一个很长的盒子里.盒子的两端都有开口,约翰每
  天可以从盒子的任一端取出最外面的一个.
•与美酒与好吃的奶酪相似,这些零食储存得越久就越好吃.当然,这样约翰就可以把它们卖出更高的价钱.
  •每份零食的初始价值不一定相同.约翰进货时,第i份零食的初始价值为Vi(1≤Vi≤1000).
  •第i份零食如果在被买进后的第a天出售,则它的售价是vi×a.
  Vi的是从盒子顶端往下的第i份零食的初始价值.约翰告诉了你所有零食的初始价值,并希望你能帮他计算一下,在这些零食全被卖出后,他最多能得到多少钱.

Input

* Line 1: A single integer,

N * Lines 2..N+1: Line i+1 contains the value of treat v(i)

Output

* Line 1: The maximum revenue FJ can achieve by selling the treats

Sample Input

5
1
3
1
5
2

Five treats. On the first day FJ can sell either treat #1 (value 1) or
treat #5 (value 2).

Sample Output

43

OUTPUT DETAILS:

FJ sells the treats (values 1, 3, 1, 5, 2) in the following order
of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.

HINT

Source

 

posted @ 2015-06-07 11:36  JSZX11556  阅读(328)  评论(0编辑  收藏  举报