温故而知新,再探ConcurrentHashMap

这里说的还是1.7的ConcurrentHashMap,在1.8中,ConcurrentHashMap已经不是基于segments实现了。

之前也知道ConcurrentHashMap是通过把锁加载各个segment上从而实现分段式锁来达到增加并发效率的,但是时间久了容易忘,这次再看了一下源码,记录一下以免再忘。为方便起见,把ConcurrentHashMap简称为CHM

首先看构造函数,有三个参数:initialCapacity,loadFactor,concurrencyLevel,前两个和HashMap是一样的,就是指定初始容量和扩容的比例参数,后面一个concurrencyLevel,从名字就可以看出来,这是指定并发数的。

 1 public ConcurrentHashMap(int initialCapacity,
 2                              float loadFactor, int concurrencyLevel) {
 3         if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
 4             throw new IllegalArgumentException();
 5         if (concurrencyLevel > MAX_SEGMENTS)
 6             concurrencyLevel = MAX_SEGMENTS;
 7         // Find power-of-two sizes best matching arguments
 8         int sshift = 0;
 9         int ssize = 1;
10         while (ssize < concurrencyLevel) {
11             ++sshift;
12             ssize <<= 1;
13         }
14         this.segmentShift = 32 - sshift;
15         this.segmentMask = ssize - 1;
16         if (initialCapacity > MAXIMUM_CAPACITY)
17             initialCapacity = MAXIMUM_CAPACITY;
18         int c = initialCapacity / ssize;
19         if (c * ssize < initialCapacity)
20             ++c;
21         int cap = MIN_SEGMENT_TABLE_CAPACITY;
22         while (cap < c)
23             cap <<= 1;
24         // create segments and segments[0]
25         Segment<K,V> s0 =
26             new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
27                              (HashEntry<K,V>[])new HashEntry[cap]);
28         Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
29         UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
30         this.segments = ss;
31     }

根据concurencyLevel,CHM会设置一个SSize,代表着segment的数量,并且这个数量很有意思,它是一个不小于concurrencyLevel的最小的2的k次方。另外还有一个sshift,这个值就是k,通过它计算segmentMask=32-sshift,通过运算hash>>>segmentMask找到相对于的hash值的高sshift位,高sshift位所能表达的方位恰好是0到ssize-1,也就是segment的数量。所以用hash>>>segmentMask的来找到key对应的segment编号简直就是天才设计啊。通过看put函数,就会发现真的是这样:

 1 public V put(K key, V value) {
 2         Segment<K,V> s;
 3         if (value == null)
 4             throw new NullPointerException();
 5         int hash = hash(key);
 6         int j = (hash >>> segmentShift) & segmentMask;
 7         if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
 8              (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
 9             s = ensureSegment(j);
10         return s.put(key, hash, value, false);
11     }

看第6行,j就是segment的编号,先通过Unsafe判断Segment存在与否,如果存在,就用ensureSegment(j)去获取这个segment。

再来看ensureSegment:

 1 private Segment<K,V> ensureSegment(int k) {
 2         final Segment<K,V>[] ss = this.segments;
 3         long u = (k << SSHIFT) + SBASE; // raw offset
 4         Segment<K,V> seg;
 5         if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
 6             Segment<K,V> proto = ss[0]; // use segment 0 as prototype
 7             int cap = proto.table.length;
 8             float lf = proto.loadFactor;
 9             int threshold = (int)(cap * lf);
10             HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
11             if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
12                 == null) { // recheck
13                 Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
14                 while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
15                        == null) {
16                     if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
17                         break;
18                 }
19             }
20         }
21         return seg;
22     }

我们再看segments,它是final的,所以它是多线程可见的,但是它的元素却不是。数组(或对象)为volatile,只能保证它的引用值是可见的,但是数组元素(或对象属性)却不是多线程可见的,这是java的设计缺陷。为了弥补这个缺陷,在上面的第5行用了 UNSAFE.getObjectVolatile(ss, u) 来补坑。

final Segment<K,V>[] segments

 找到了segment之后,接下来就是调用segment的put方法把数据插入到segment里面了。看segment的put函数,第一行居然有一个trylock(),而且根据获取锁的结果进行了不同的操作。因为Segment类继承了ReetrantLock,所以锁的就是它本身。如果tryLock成功获取到写入锁,node就设为Null,然后进入正常的流程。如果获取锁失败,那么就要先进入scanAndLockForPut操作。

 1 final V put(K key, int hash, V value, boolean onlyIfAbsent) {
 2             HashEntry<K,V> node = tryLock() ? null :
 3                 scanAndLockForPut(key, hash, value);
 4             V oldValue;
 5             try {
 6                 HashEntry<K,V>[] tab = table;
 7                 int index = (tab.length - 1) & hash;
 8                 HashEntry<K,V> first = entryAt(tab, index);
 9                 for (HashEntry<K,V> e = first;;) {
10                     if (e != null) {
11                         K k;
12                         if ((k = e.key) == key ||
13                             (e.hash == hash && key.equals(k))) {
14                             oldValue = e.value;
15                             if (!onlyIfAbsent) {
16                                 e.value = value;
17                                 ++modCount;
18                             }
19                             break;
20                         }
21                         e = e.next;
22                     }
23                     else {
24                         if (node != null)
25                             node.setNext(first);
26                         else
27                             node = new HashEntry<K,V>(hash, key, value, first);
28                         int c = count + 1;
29                         if (c > threshold && tab.length < MAXIMUM_CAPACITY)
30                             rehash(node);
31                         else
32                             setEntryAt(tab, index, node);
33                         ++modCount;
34                         count = c;
35                         oldValue = null;
36                         break;
37                     }
38                 }
39             } finally {
40                 unlock();
41             }
42             return oldValue;
43         }

 

我们接下来看tryLock失败之后会发生什么。我们知道,CHM在读取操作是不加锁,但是在写入操作的时候是一定要加锁的,但是呢,真的是一开始就加锁吗?仔细观察scanAndLockForPut函数,发现不是这样的。scanAndLockForPut函数有个循环,以自旋锁的方式一直在尝试获取锁,如果不成功就循环下去。但是就这样一直循环下去吗?也不是,可以看下面,有个retries参数,每循环一次,这个reties参数就加1。从19行到22行可知,当达到MAX_SCAN_RETRIES次数之后,就会直接调用lock(),自旋锁变成了重量级锁。而且我们可以看到,在自旋的过程中,scanAndForput并不是什么都没干的,它总是在干一件事儿:给node赋值。如果node为null,就生成新对象。如果找到了key相等的节点,则指向找到的节点。并且在这个过程中,每隔一步((retries & 1) == 0,不明白为什么要在偶数次检查)检查一次table是否已经变了,如果变了,则需要重新找node(把制为retries = -1;,是的重新进入retries < 0逻辑),开始重新计算retries。也就是说如果有线程改变了当前segment,则继续等待MAX_SCAN_RETRIES次。

 1 private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
 2             HashEntry<K,V> first = entryForHash(this, hash);
 3             HashEntry<K,V> e = first;
 4             HashEntry<K,V> node = null;
 5             int retries = -1; // negative while locating node
 6             while (!tryLock()) {
 7                 HashEntry<K,V> f; // to recheck first below
 8                 if (retries < 0) {
 9                     if (e == null) {
10                         if (node == null) // speculatively create node
11                             node = new HashEntry<K,V>(hash, key, value, null);
12                         retries = 0;
13                     }
14                     else if (key.equals(e.key))
15                         retries = 0;
16                     else
17                         e = e.next;
18                 }
19                 else if (++retries > MAX_SCAN_RETRIES) {//当达到MAX_SCAN_RETRIES次数之后,就会直接调用lock(),自旋锁变成了重量级锁。
20                     lock();
21                     break;
22                 }
23                 else if ((retries & 1) == 0 &&
24                          (f = entryForHash(this, hash)) != first) {
25                     e = first = f; // re-traverse if entry changed
26                     retries = -1;
27                 }
28             }
29             return node;
30         }

然后在回到put函数。put函数也很妙,我们直接以注解的方式来说明:

 1 final V put(K key, int hash, V value, boolean onlyIfAbsent) {
 2             //先尝试获取锁,如果获取失败,则进入scanAndLockForPut函数,并在scanAndLockForPut函数中尝试以自旋的方式获取锁。
 3             HashEntry<K,V> node = tryLock() ? null :
 4                 scanAndLockForPut(key, hash, value);
 5             V oldValue;
 6             try {
 7                 HashEntry<K,V>[] tab = table;
 8                 //计算hash桶的位置
 9                 int index = (tab.length - 1) & hash;
10                 //获取到第一个节点
11                 HashEntry<K,V> first = entryAt(tab, index);
12                 //遍历hash桶中的HashEntry
13                 for (HashEntry<K,V> e = first;;) {
14                     if (e != null) {//如果没有遍历完
15                         K k;
16                         //如果找到了相同的key,则根据onlyIfAbsent判断是替换值还是不做任何操作,并且结束遍历
17                         if ((k = e.key) == key ||
18                             (e.hash == hash && key.equals(k))) {
19                             oldValue = e.value;
20                             if (!onlyIfAbsent) {
21                                 e.value = value;
22                                 ++modCount;
23                             }
24                             break;
25                         }
26                         e = e.next;
27                     }
28                     else {//如果遍历到了头,则检查是否在scanAndLockForPut已经获取了node,如果是,则设置node的next为当前的first
29                         if (node != null)
30                             node.setNext(first);
31                         else//如果scanAndLockForPut没有获取node,则新建node,注意,node的next还是first。
32                             node = new HashEntry<K,V>(hash, key, value, first);
33                         int c = count + 1;
34                         //如果超过了阈值,则先进行扩容
35                         if (c > threshold && tab.length < MAXIMUM_CAPACITY)
36                             rehash(node);
37                         else//最后,把node放入table中。可见,新插入的node总是位于链表的最前端的
38                             setEntryAt(tab, index, node);
39                         ++modCount;
40                         count = c;
41                         oldValue = null;
42                         break;
43                     }
44                 }
45             } finally {
46                 unlock();
47             }
48             return oldValue;
49         }

可以看到,新加入的HashEntry总是位于链表的最前端。这是和HashMap的区别之一,HashMap新加入的节点是挂在链表的最后端的。

接下来看扩容,扩容位于函数rehash中,因为扩容函数比较复杂,所以我们依然用注解的方式逐条说明:

 1 private void rehash(HashEntry<K,V> node) {
 2             /*
 3              * Reclassify nodes in each list to new table.  Because we
 4              * are using power-of-two expansion, the elements from
 5              * each bin must either stay at same index, or move with a
 6              * power of two offset. We eliminate unnecessary node
 7              * creation by catching cases where old nodes can be
 8              * reused because their next fields won't change.
 9              * Statistically, at the default threshold, only about
10              * one-sixth of them need cloning when a table
11              * doubles. The nodes they replace will be garbage
12              * collectable as soon as they are no longer referenced by
13              * any reader thread that may be in the midst of
14              * concurrently traversing table. Entry accesses use plain
15              * array indexing because they are followed by volatile
16              * table write.
17              */
18             HashEntry<K,V>[] oldTable = table;
19             int oldCapacity = oldTable.length;
20             int newCapacity = oldCapacity << 1;
21             //重新计算扩容阈值
22             threshold = (int)(newCapacity * loadFactor);
23             //新建Table
24             HashEntry<K,V>[] newTable =
25                 (HashEntry<K,V>[]) new HashEntry[newCapacity];
26             //从新计算掩膜,掩膜的作用就是计算索引值,利用table长度是2的整数次方(k)这一特性,直接区hash值的低k位就是索引值
27             int sizeMask = newCapacity - 1;
28             //遍历处理table上的每一个hash桶
29             for (int i = 0; i < oldCapacity ; i++) {
30                 HashEntry<K,V> e = oldTable[i];
31                 if (e != null) {
32                     //如果当前hash桶不为空,则需要处理
33                     HashEntry<K,V> next = e.next;
34                     //计算新桶在新table中的位置
35                     int idx = e.hash & sizeMask;
36                     //如果当前hash桶只有一个节点,直接把他放到新桶中就可以了
37                     if (next == null)   //  Single node on list
38                         newTable[idx] = e;
39                     //否则的话,就需要遍历当前桶的链表
40                     else { // Reuse consecutive sequence at same slot
41                         HashEntry<K,V> lastRun = e;
42                         int lastIdx = idx;
43                         //找到第一个后续元素的新位置都不变的节点,然后把这个节点当成头结点,直接把后续的整个链表都放入新table中
44                         //因为table的容量总是2的k次方,而且每次扩容都是容量乘以2,也就是segmentMask会增加1位,那么,节点的新桶在
45                         // 新table中的位置要么还是老位置,要么增加了一个oldCapacity,具体要看新增的这一位上key的hash值是否为1.
46                         
47                         for (HashEntry<K,V> last = next;
48                              last != null;
49                              last = last.next) {
50                             int k = last.hash & sizeMask;
51                             if (k != lastIdx) {
52                                 lastIdx = k;
53                                 lastRun = last;
54                             }
55                         }
56                         //直接把整个连续的位置不变的节点组成的链表加入到新桶中
57                         newTable[lastIdx] = lastRun;
58                         // Clone remaining nodes
59                         //把剩下的节点(都在搬迁链表的前端)一个个放入到新桶中。
60                         //同样,每次都是加入到桶的最前端
61                         for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
62                             V v = p.value;
63                             int h = p.hash;
64                             int k = h & sizeMask;
65                             HashEntry<K,V> n = newTable[k];
66                             newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
67                         }
68                     }
69                 }
70             }
71             //扩容完成之后,在新的table中插入要put的节点
72             int nodeIndex = node.hash & sizeMask; // add the new node
73             node.setNext(newTable[nodeIndex]);
74             newTable[nodeIndex] = node;
75             table = newTable;
76         }

 扩容后的节点的桶位置要么在和原来一样,要么就是增加一个oldCapacity。容量选为2的k次方的优势在rehash中再次得到体现。

最后再来看remove操作。因为1.7中HashEntry的next已经不是final而是volatile的了,所以remove操作改变比较大。在之前,因为无法改变一个HashEntry的next指针,所以只能把欲删除的节点之前的节点全部new一遍,并且会发生转向。而1.7中,可以直接改变next的值,从而实现节点的删除。

显式看remove函数。很简单,就是找到对应的segment,然后调用segment的remove函数。

1 public boolean remove(Object key, Object value) {
2         int hash = hash(key);
3         Segment<K,V> s;
4         return value != null && (s = segmentForHash(hash)) != null &&
5             s.remove(key, hash, value) != null;
6     }

接下来看segment的remove函数,这个函数仍然是以注释的方式加以说明。

 1 final V remove(Object key, int hash, Object value) {
 2             if (!tryLock())
 3             //自旋尝试获取锁
 4                 scanAndLock(key, hash);
 5             V oldValue = null;
 6             //获取锁之后
 7             try {
 8                 HashEntry<K,V>[] tab = table;
 9                 int index = (tab.length - 1) & hash;
10                 //取得头结点
11                 HashEntry<K,V> e = entryAt(tab, index);
12                 HashEntry<K,V> pred = null;
13                 while (e != null) {
14                     K k;
15                     HashEntry<K,V> next = e.next;
16                     //如果已经找到节点
17                     if ((k = e.key) == key ||
18                         (e.hash == hash && key.equals(k))) {
19                         V v = e.value;
20                         //并且值相等,或者传入的值为null(说明是删除指定的key),则删除
21                         if (value == null || value == v || value.equals(v)) {
22                         //如果是找到的节点头结点,则将next节点存入table中
23                             if (pred == null)
24                                 setEntryAt(tab, index, next);
25                             else
26                             //否则让pred节点指向next节点,使当前节点删除
27                                 pred.setNext(next);
28                             ++modCount;
29                             --count;
30                             oldValue = v;
31                         }
32                         //否则什么都不做,直接跳出循环
33                         break;
34                     }
35                     //继续找下一个节点
36                     pred = e;
37                     e = next;
38                 }
39             } finally {
40                 unlock();
41             }
42             return oldValue;
43         }

 

发现remove函数里面也有一个类似于put函数中的scanAndLockForput函数的函数,叫做scanAndLock。但是很奇怪,这个函数只做自旋操作,却并不传递出任何只,其实完全可以在自旋的过程中找到prev和e的,而不是非要等到获取到锁之后再进行,不知道1.8中有没有改进(但是1.8已经没有segment了),有时间去看看1.8中怎么实现的。

 1 /**
 2          * Scans for a node containing the given key while trying to
 3          * acquire lock for a remove or replace operation. Upon
 4          * return, guarantees that lock is held.  Note that we must
 5          * lock even if the key is not found, to ensure sequential
 6          * consistency of updates.
 7          */
 8         private void scanAndLock(Object key, int hash) {
 9             // similar to but simpler than scanAndLockForPut
10             HashEntry<K,V> first = entryForHash(this, hash);
11             HashEntry<K,V> e = first;
12             int retries = -1;
13             while (!tryLock()) {
14                 HashEntry<K,V> f;
15                 if (retries < 0) {
16                     if (e == null || key.equals(e.key))
17                         retries = 0;
18                     else
19                         e = e.next;
20                 }
21                 else if (++retries > MAX_SCAN_RETRIES) {
22                     lock();
23                     break;
24                 }
25                 else if ((retries & 1) == 0 &&
26                          (f = entryForHash(this, hash)) != first) {
27                     e = first = f;
28                     retries = -1;
29                 }
30             }
31         }

再看clear。clear函数很简单,先是通过segments获取所有的segments,然后迭代删除:

1 public void clear() {
2         final Segment<K,V>[] segments = this.segments;
3         for (int j = 0; j < segments.length; ++j) {
4             Segment<K,V> s = segmentAt(segments, j);
5             if (s != null)
6                 s.clear();
7         }
8     }

每个segment的clear也很简单,就是获取table,然后让hash桶变成null:

 1 final void clear() {
 2             lock();
 3             try {
 4                 HashEntry<K,V>[] tab = table;
 5                 for (int i = 0; i < tab.length ; i++)
 6                     setEntryAt(tab, i, null);
 7                 ++modCount;
 8                 count = 0;
 9             } finally {
10                 unlock();
11             }
12         }

 再看size函数和isEmpty函数,也很有意思。他们都通过多次遍历segments,并比较各趟遍历的modCount之和,看是否变化,一次判断是否在调用size和isEmpty的时候是否发生了更改。

isEmpty之需循环遍历两趟,sum先在第一趟遍历中累加segment.modCount,在第二趟遍历时减掉各modCount,如果最终等于0,则说明两趟之间各modCount都没有变化,说明是准确的。如果这两趟遍历中,有一个segment不是Empty的,就会返回false。如果没有一个segment不是空的,最终就会返回true。但是很明显,这种方式有个缺点,他不能检测ABA问题,比如有一个segment增加了一个节点,有删除了一个节点,这是它还是空的,但是modCount却发生了变化,此时isEmpty就会返回错误的结果。另外,采用同样方式的还有containsValue操作,但是containsKey操作不是这样的,所以containsKey是不可靠的,很奇怪为什么要这么处理。

 1 public boolean isEmpty() {
 2         /*
 3          * Sum per-segment modCounts to avoid mis-reporting when
 4          * elements are concurrently added and removed in one segment
 5          * while checking another, in which case the table was never
 6          * actually empty at any point. (The sum ensures accuracy up
 7          * through at least 1<<31 per-segment modifications before
 8          * recheck.)  Methods size() and containsValue() use similar
 9          * constructions for stability checks.
10          */
11         long sum = 0L;
12         final Segment<K,V>[] segments = this.segments;
13         for (int j = 0; j < segments.length; ++j) {
14             Segment<K,V> seg = segmentAt(segments, j);
15             if (seg != null) {
16                 if (seg.count != 0)
17                     return false;
18                 sum += seg.modCount;
19             }
20         }
21         if (sum != 0L) { // recheck unless no modifications
22             for (int j = 0; j < segments.length; ++j) {
23                 Segment<K,V> seg = segmentAt(segments, j);
24                 if (seg != null) {
25                     if (seg.count != 0)
26                         return false;
27                     sum -= seg.modCount;
28                 }
29             }
30             if (sum != 0L)
31                 return false;
32         }
33         return true;
34     }

size不是遍历两趟,而是多趟,如果有两趟之间modCount之和没有变化,则返回遍历的累加结果。否则继续遍历,当达到一定次数之后发现变化还是稳定不下来,就会对segment加锁遍历。

 1 public int size() {
 2         // Try a few times to get accurate count. On failure due to
 3         // continuous async changes in table, resort to locking.
 4         final Segment<K,V>[] segments = this.segments;
 5         int size;
 6         boolean overflow; // true if size overflows 32 bits
 7         long sum;         // sum of modCounts
 8         long last = 0L;   // previous sum
 9         int retries = -1; // first iteration isn't retry
10         try {
11             for (;;) {
12                 if (retries++ == RETRIES_BEFORE_LOCK) {
13                     for (int j = 0; j < segments.length; ++j)
14                         ensureSegment(j).lock(); // force creation
15                 }
16                 sum = 0L;
17                 size = 0;
18                 overflow = false;
19                 for (int j = 0; j < segments.length; ++j) {
20                     Segment<K,V> seg = segmentAt(segments, j);
21                     if (seg != null) {
22                         sum += seg.modCount;
23                         int c = seg.count;
24                         if (c < 0 || (size += c) < 0)
25                             overflow = true;
26                     }
27                 }
28                 if (sum == last)
29                     break;
30                 last = sum;
31             }
32         } finally {
33             if (retries > RETRIES_BEFORE_LOCK) {
34                 for (int j = 0; j < segments.length; ++j)
35                     segmentAt(segments, j).unlock();
36             }
37         }
38         return overflow ? Integer.MAX_VALUE : size;
39     }

 

posted on 2018-04-08 17:45  J.M.Liu  阅读(413)  评论(0编辑  收藏  举报