2020/11/06 模拟赛 T1
Description
有一$n$个节点的树,每个节点有一点权$a_i$,定义$dist(x,y)$为$x$到$y$的边数。选取一点$v$,使$\sum_{i=1}^n dist(i,v) \times a_i + dist(i,v)^2 \times b_i$最大
Solution
两次DFS,一次DFS求子树内,第二次考虑子树外
#include<iostream> #include<cstdio> #include<cmath> using namespace std; int n,tot,head[300005]; long long a[300005],b[300005],sa[300005],fa[300005],sb[300005],fb[300005],g[300005],ans; struct Edge { int to,nxt; }edge[600005]; inline int read() { int w=0,f=1; char ch=0; while(ch<'0'||ch>'9'){if(ch=='-') f=-1; ch=getchar();} while(ch>='0'&&ch<='9')w=(w<<1)+(w<<3)+ch-'0',ch=getchar(); return w*f; } void dfs1(int k,int f) { sa[k]=a[k],sb[k]=b[k]; for(int i=head[k];i;i=edge[i].nxt) { int v=edge[i].to; if(v!=f) { dfs1(v,k); sa[k]+=sa[v],sb[k]+=sb[v]; fa[k]+=fa[v]+sa[v],fb[k]+=fb[v]+sb[v]; g[k]+=g[v]+2*fb[v]+sb[v]; } } } void dfs2(int k,int f) { if(k!=1) { g[k]+=(g[f]-g[k]-2*fb[k]-sb[k])+2*(fb[f]-fb[k]-sb[k])+sb[1]-sb[k]; fa[k]+=fa[f]-fa[k]-sa[k]+sa[1]-sa[k],fb[k]+=fb[f]-fb[k]-sb[k]+sb[1]-sb[k]; } for(int i=head[k];i;i=edge[i].nxt) { int v=edge[i].to; if(v!=f) dfs2(v,k); } } int main() { n=read(); for(int i=1;i<=n;i++) a[i]=read(); for(int i=1;i<=n;i++) b[i]=read(); for(int i=1;i<n;i++) { int u=read(),v=read(); edge[++tot]=(Edge){v,head[u]},head[u]=tot; edge[++tot]=(Edge){u,head[v]},head[v]=tot; } dfs1(1,0); dfs2(1,0); for(int i=1;i<=n;i++) ans=max(ans,fa[i]+g[i]); printf("%lld\n",ans); return 0; }