Celery

1 Celery介绍

  1、celery应用举例

      1、Celery 是一个 基于python开发的分布式异步消息任务队列,通过它可以轻松的实现任务的异步处理,
          如果你的业务场景中需要用到异步任务,就可以考虑使用celery

      2、你想对100台机器执行一条批量命令,可能会花很长时间 ,但你不想让你的程序等着结果返回,而是给你返回 一个任务ID,
        你过一段时间只需要拿着这个任务id就可以拿到任务执行结果, 在任务执行ing进行时,你可以继续做其它的事情

      3、Celery 在执行任务时需要通过一个消息中间件来接收和发送任务消息,以及存储任务结果, 一般使用rabbitMQ or Redis

  2、Celery有以下优点

      1、简单:一单熟悉了celery的工作流程后,配置和使用还是比较简单的

      2、高可用:当任务执行失败或执行过程中发生连接中断,celery 会自动尝试重新执行任务

      3、快速:一个单进程的celery每分钟可处理上百万个任务

      4、灵活: 几乎celery的各个组件都可以被扩展及自定制

  3、Celery基本工作流程图

      

    user:用户程序,用于告知celery去执行一个任务。
    broker: 存放任务(依赖RabbitMQ或Redis,进行存储)
    worker:执行任务

2 celery简单使用

   1、安装

      1.  安装celery pip3 install celery             # ln -s /usr/local/python3/bin/celery /bin/celery

      2.  安装redis

   2、创建tasks.py文件进行验证

from celery import Celery
import time

app = Celery('TASK',
             broker='redis://localhost',        
             backend='redis://localhost')

@app.task
def add(x, y):
   print("running..add.", x, y)
   return x + y

@app.task
def minus(x, y):
   time.sleep(60)
   print("running..minus.", x, y)
   return x - y

   1、启动Celery Worker来开始监听并执行任务

        celery -A tasks worker --loglevel=info            # taskstasks.py文件:必须在tasks.py所在目录下执行

    2、调用任务:再打开两个终端,进行命令行模式,调用任务

         >>> import tasks

        >>> import tasks

        >>> t2 = tasks.minus.delay(9,11)

        #然后在另一个终端重复上面步骤执行

        >>> t1 = tasks.add.delay(3,4)

        >>> t1.get()                                                   #由于t2执行sleep3s所以t1.get()需要等待

  3、celery其他命令

      >>> t.ready()                                                  #返回true证明可以执行,不必等待

      >>> t.get(timeout=1)                                      #如果1秒不返回结果就超时,避免一直等待

      >>> t.get(propagate=False)                          #如果执行的代码错误只会打印错误信息

      >>> t.traceback                                             #打印异常详细结果

3 在项目中如何使用celery

  1、创建目录celery_pro,并在celery_pro下创建下面两个文件

    1)celery.py

from __future__ import absolute_import, unicode_literals
#1. absolute_import 可以使导入的celery是python绝对路基的celery模块,不是当前我们创建的celery.py
#2. unicode_literals 模块可能是python2和3兼容的,不知道
from celery import Celery
# from .celery import Celery        #这样才是导入当前目录下的celery

app = Celery('proj',
             broker='redis://localhost',
             backend='redis://localhost',
             include=['celery_pro.tasks',
                      'celery_pro.tasks2',
                      ])
#celery-pro是存放celery文件的文件夹名字

#实例化时可以添加下面这个属性
app.conf.update(
   result_expires=3600,        #执行结果放到redis里,一个小时没人取就丢弃
)

# 配置定时任务:每5秒钟执行 调用一次celery_pro下tasks.py文件中的add函数
app.conf.beat_schedule = {
    'add-every-5-seconds': {
        'task': 'celery_pro.tasks.add',
        'schedule': 5.0,
        'args': (16, 16)
    },
}
app.conf.timezone = 'UTC'

if __name__ == '__main__':
   app.start()

    2)tasks.py

from __future__ import absolute_import, unicode_literals
from .celery import app       #从当前目录导入app

#写一个add函数
@app.task
def add(x, y):
    return x + y

    3)tasks2.py

from __future__ import absolute_import, unicode_literals
from .celery import app
import time,random

@app.task
def randnum(start,end):
    time.sleep(3)
    return random.randint(start,end)

touch __init__.py                     # 在celery_pro目录下新建__init__.py文件,否则执行命令时会报错

  2、执行下面两条命令即可让celery定时执行任务了 

    1、 启动一个worker:在celery_pro外层目录下执行

        celery -A celery_pro worker -l info

    2、 启动任务调度器 celery beat

        celery -A celery_pro beat -l info

    3、执行效果

        看到celery运行日志中每5秒回返回一次 add函数执行结果    

  3、启动celery的worker:每台机器可以启动8个worker

                  1pythondir目录下启动 /pythondir/celery_pro/ 目录下的worker

                          celery -A celery_pro worker -l info

                  2、后台启动worker/pythondir/celery_pro/目录下执行

                          celery multi start w1 -A celery_pro -l info             #在后台启动w1这个worker

                          celery multi start w1 w2 -A celery_pro -l info       #一次性启动w1,w2两个worker

                          celery -A celery_pro status                                       #查看当前有哪些worker在运行

                          celery multi stop w1 w2 -A celery_pro                   #停止w1,w2两个worker

                          celery multi restart w1 w2 -A celery_pro               #重启w1,w2两个worker

4 celery与Django项目最佳实践

pip3 install Django==2.0.4
pip3 install celery==4.3.0
pip3 install redis==3.2.1
pip3 install ipython==7.6.1 

find ./ -type f | xargs sed -i 's/\r$//g'     # 批量将当前文件夹下所有文件装换成unix格式
celery  multi start celery_test -A celery_test -l debug --autoscale=50,5        # celery并发数:最多50个,最少5个
http://docs.celeryproject.org/en/latest/reference/celery.bin.worker.html#cmdoption-celery-worker-autoscale
ps auxww|grep "celery worker"|grep -v grep|awk '{print $2}'|xargs kill -9       # 关闭所有celery进程

  1、Django中使用celery介绍(celery无法再windows下运行)

      1)在Django中使用celery时,celery文件必须以tasks.py

      2)Django会自动到每个APP中找tasks.py文件

  2、 创建一个Django项目celery_test,和app01

  3、在与项目同名的目录下创建celery.py 

from __future__ import absolute_import
import os
from celery import Celery

# 只要是想在自己的脚本中访问Django的数据库等文件就必须配置Django的环境变量
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'celery_test.settings')

# app名字
app = Celery('celery_test')

# 配置celery
class Config:
    BROKER_URL = 'redis://192.168.56.11:6379'
    CELERY_RESULT_BACKEND = 'redis://192.168.56.11:6379'

app.config_from_object(Config)
# 到各个APP里自动发现tasks.py文件
app.autodiscover_tasks()

    4、在与项目同名的目录下的 __init__.py 文件中添加下面内容

from __future__ import absolute_import, unicode_literals

# 告诉Django在启动时别忘了检测我的celery文件
from .celery import app as celery_ap
__all__ = ['celery_app']

    5、创建app01/tasks.py文件

from __future__ import absolute_import, unicode_literals
from celery import shared_task

# 这里不再使用@app.task,而是用@shared_task,是指定可以在其他APP中也可以调用这个任务
@shared_task
def add(x, y):
   return x + y

    6、在setings.py文件指定redis服务器的配置

CELERY_BROKER_URL = 'redis://localhost'
CELERY_RESULT_BACKEND = 'redis://localhost'

  

  7、celery_test这个Django项目拷贝到centos7.3django_test文件夹中

  8、保证启动了redis-server

  9、 启动一个celeryworker

      celery -A celery_test worker -l info

  10、Linux中启动 Django项目

      python3 manage.py runserver 0.0.0.0:9000

  11、访问http://1.1.1.3:9000/celery_call/ 获取任务id

       

  12、根据11中的任务id获取对应的值

      http://1.1.1.3:9000/celery_result/?id=5065b65b-0c01-430a-a67f-9531fe3e8d90

5 基于步骤1.4:在django中使用计划任务功能

  1、Django中使用celery的定时任务需要安装django-celery-beat

      pip3 install django-celery-beat

  2、 在Django的settings中注册django_celery_beat

  INSTALLED_APPS = (
        ...,
        'django_celery_beat',
    )

  3、执行创建表命令

      python3 manage.py makemigrations

      python3 manage.py migrate

      python3 manage.py startsuperuser

  4、运行Django项目

      celery -A celery_test worker -l info

      python3 manage.py runserver 0.0.0.0:9000

  5、登录 http://1.1.1.3:9000/admin/ 可以看到多了三张表

       

  6、在intervals表中添加一条每5秒钟执行一次的任务的时钟

       

  7、在Periodic tasks表中创建任务

       

  8、在/django_test/celery_test/目录下执行下面命令

      celery -A celery_test worker -l info                                                   #启动一个worker

      python manage.py runserver 0.0.0.0:9000                           #运行Django项目

      celery -A celery_test beat -l info -S django                                                   #启动心跳任务

      说明:

        运行上面命令后就可以看到在运行celery -A celery_test worker -l info         的窗口中每5秒钟执行一次app01.tasks.add: 2+3=5

  9、关于添加新任务必须重启心跳问题

      1、 每次在Django表中添加一个任务就必须重启一下beat

      2、 但是Django中有一个djcelery插件可以帮助我们不必重启

 

posted @ 2020-04-11 19:41  darkly  阅读(418)  评论(3编辑  收藏  举报