进制转换
题目描述
我们可以用这样的方式来表示一个十进制数: 将每个阿拉伯数字乘以一个以该数字所处位置的(值减1)为指数,以10为底数的幂之和的形式。例如:123可表示为 1*10^2+2*10^1+3*10^0这样的形式。
与之相似的,对二进制数来说,也可表示成每个二进制数码乘以一个以该数字所处位置的(值-1)为指数,以2为底数的幂之和的形式。一般说来,任何一个正整数R或一个负整数-R都可以被选来作为一个数制系统的基数。如果是以R或-R为基数,则需要用到的数码为 0,1,....R-1。例如,当R=7时,所需用到的数码是0,1,2,3,4,5和6,这与其是R或-R无关。如果作为基数的数绝对值超过10,则为了表示这些数码,通常使用英文字母来表示那些大于9的数码。例如对16进制数来说,用A表示10,用B表示11,用C表示12,用D表示13,用E表示14,用F表示15。
在负进制数中是用-R 作为基数,例如-15(十进制)相当于110001(-2进制),并且它可以被表示为2的幂级数的和数:
110001=1*(-2)5+1*(-2)4+0*(-2)3+0*(-2)2+0*(-2)1 +1*(-2)0
设计一个程序,读入一个十进制数和一个负进制数的基数, 并将此十进制数转换为此负进制下的数:-R∈{-2,-3,-4,...,-20}
输入输出格式
输入格式:
输入的每行有两个输入数据。
第一个是十进制数N(-32768<=N<=32767); 第二个是负进制数的基数-R。
输出格式:
结果显示在屏幕上,相对于输入,应输出此负进制数及其基数,若此基数超过10,则参照16进制的方式处理。
输入输出样例
输入样例#1:
30000 -2
输出样例#1:
30000=11011010101110000(base-2)
输入样例#2:
-20000 -2
输出样例#2:
-20000=1111011000100000(base-2)
输入样例#3:
28800 -16
输出样例#3:
28000=19180(base-16)
输入样例#4:
-25000 -16
输出样例#4:
-25000=7FB8(base-16)
说明
NOIp2000提高组第一题
思路:
短除法。
代码实现:
1 #include<cstdio> 2 int n,mod,a,b,l; 3 int s[120]; 4 char ch[50]; 5 int main(){ 6 scanf("%d%d",&n,&mod); 7 for(int i=0;i<10;i++) ch[i]=i+'0'; 8 for(int i=0;i<26;i++) ch[i+10]=i+'A'; 9 printf("%d=",n); 10 while(n){ 11 s[l]=n%mod; 12 if(s[l]<0) s[l]-=mod;//防止出现负数。 13 n=(n-s[l])/mod;//防止n值与取出的低阶值不符。 14 l++; 15 } 16 for(int i=l-1;i>=0;i--) printf("%c",ch[s[i]]); 17 printf("(base%d)",mod); 18 return 0; 19 }
题目来源:洛谷