Codeforces Round #674 (Div. 3) C、D 题解

C.Increase and Copy #枚举

题目链接

题意

最初你有仅包含一个数字\(1\)的数组\(a\),一次操作中可对该数组进行两类操作:

  • 从数组中选择一个元素,将该元素\(+1\)
  • 从数组中选择一个元素,复制该元素放到原数组末端。

你需要在尽可能少的操作次数下,使得该数组所有元素值之和不小于\(n\)(\(n\leq 1e9\)),现要你求出最少操作次数

分析

显然,操作过程中,一定是先对最初元素不断自增,直到某个值后,再复制这个元素,即先进行第一类操作再进行第二类,这样能够保证操作次数尽可能少。

那么我们应该将最初元素加到多少才复制呢?我们可以枚举该元素可以增加\(i\),那么消耗次数为\(i-1\),那么接下来复制次数即为\(\lceil{\frac{n - i}{i}} \rceil\),故总消耗次数为\(i-1+\lceil{\frac{n - i}{i}} \rceil\)。枚举\(i\),找到\(i-1+\lceil{\frac{n - i}{i}} \rceil\)的最小值即可。另外,我们无需从\(1\)枚举到\(n\),枚举到\(\sqrt{n}\)即可。

#include <string>
#include <cstring>
#include <cstdio>
#include <iostream>
#include <stack>
#include <cmath>
#include <queue>
#include <map>
#include <vector>
#include <deque>
#include <algorithm>
#include <unordered_map>
using namespace std;
typedef long long ll;
const int MAXN = 15;
int q, n;
int main(){
    scanf("%d", &q);
    while(q--){
        scanf("%d", &n);
        int mymin = 0x3f3f3f3f;
        for(int i = 1; i * i <= n; i++){
            int sum = (i - 1) + (n - i) / i + ((n - i) % i != 0);
            mymin = min(mymin, sum);
        }
        printf("%d\n", mymin);
    }
    return 0;
}

由官方题解思路,因为所求最值应该在\(\sqrt{n}\)的附近,我们枚举\([\lfloor \sqrt{n}\rfloor+5, \lfloor \sqrt{n}\rfloor-5]\)找最值,就能达到\(O(1)\)复杂度了。

D. Non-zero Segments #前缀和 #哈希表

题目链接

题意

给定长为\(n\)、包含正整数、也会包含负整数、但一定不包含\(0\)的数组\(a\),你需要在这个数组中某些位置插入任意值,保证该数组任意区间值之等于\(0\),现要你求出最少插入元素数量。

分析

设该数组前缀和\(sum_i\),我们知道,某个区间\([l, r]\)的值之和为\(0\),那么就意味着\(sum_r\)\(sum_l\)是相等的。于是,我们便可通过哈希表去记录某个前缀和是否出现过,一旦出现过,假设从左到右遍历到\(i\),发现当前的前缀和\(sum_i\),在之前出现过,说明这一中间区间的权值之和一定为\(0\),那么按照题目要求,我们将某个值插入到\(i\)的前面,使得这一中间区间的权值之和不为0的同时,保证不会与后面区间相加为\(0\)(实际插入值无需真的确定下来),此时答案加\(1\)(当然,这只是个假想的插入操作,无需真的模拟,只需要将当前前缀和置为\(0\),从\(i\)开始重新计\(sum\)即可)。别忘了,每次迭代的过程中,要记录当前前缀和到哈希表中。另外预处理时,应将前缀和为\(0\)记录到哈希表,因为有可能相邻两元素恰好为相反数。

#include <string>
#include <cstring>
#include <cstdio>
#include <iostream>
#include <stack>
#include <cmath>
#include <queue>
#include <map>
#include <vector>
#include <deque>
#include <algorithm>
#include <unordered_map>
using namespace std;
typedef long long ll;
const int MAXN = 2e5+5;
unordered_map<ll, int> mymap;
int main(){
    int n, ans = 0;
    scanf("%d", &n);
    ll sum = 0, cur;
    mymap[0] = 1; //考虑到相邻元素恰为相反数
    for(int i = 1; i <= n; i++){
        scanf("%lld", &cur);
        sum += cur;
        if(mymap[sum] > 0){ //发现之前出现过该前缀和
            mymap.clear();
            mymap[0] = 1;
            sum = cur; //前缀和清零(假想cur之前插入了一个数,保证前面区间不会与后面区间相加为0)
            ans++;
        }
        mymap[sum]++;//记录该前缀和
    }
    printf("%d\n", ans);
    return 0;
}
posted @ 2020-09-28 21:05  J_StrawHat  阅读(151)  评论(0编辑  收藏  举报