单变量微积分学习笔记:重要极限(2)【1,13】

两个重要极限

\(\lim_{x \to 0}\frac{\sin(x)}{x} = 1\)
\(\lim_{x \to 0}(1+x)^{\frac{1}{x}} = e\)



证明

\(\lim_{x \to 0}\frac{\sin(x)}{x} = 1\)
image
\(x \to 0\),弧趋于直线,即\(\lim_{x \to 0}\frac{\sin(x)}{x} = 1\)


\(\lim_{x \to 0}(1+x)^{\frac{1}{x}} = e\)
证法1:导数定义
\(e^{\lim_{x \to 0}\frac{\ln(1+x)}{x}} = e^{\lim_{x \to 0}\frac{\ln(1+x)-\ln(1)}{x}} = e^{\lim_{\Delta x \to 0}\frac{\ln(1+\Delta x)-\ln(1)}{\Delta x}} = e^{\ln'(1)} = e\)

证法2:线性近似
\(x \to 0\)\(e^{\frac{1}{x}ln(1+x)} \approx e^{\frac{1}{x}x} = e\)

posted @ 2024-11-19 10:21  Keith-  阅读(2)  评论(0编辑  收藏  举报