单变量微积分学习笔记:求导(6)【3】

常见

\((x^n)' = nx^{n-1}\)

\((sin(x))' = cos(x)\)

\((cos(x))' = -sin(x)\)

\((x^n)' = nx^{n-1}\)

  1. \(n \in Z^+\)

    \(\lim_{\Delta x \to 0} \frac{(x+\Delta x)^n - x^n}{\Delta x} = \lim_{\Delta x \to 0} \frac{nx^{n-1}\Delta x+O(\Delta x^2)}{\Delta x} = \lim_{\Delta x \to 0}{nx^{n-1}+O(\Delta x)} = nx^{n-1}\)(二项式定理)

  2. \(n \in Z\)

    \(n < 0,(x^n)' = (\frac{1}{x^{-n}})' = \frac{nx^{-n-1}}{x^{-2n}} = nx^{n-1}\)(除法求导法则)

  3. \(n \in Q\)

    \(y = x^n = x^{\frac{a}{b}}\)\(y^{b} = x^a\)

    \(by^{b-1}y'=ax^{a-1}\)(隐式求导法则)

    \(y' = \frac{a}{b}x^{\frac{a}{b}-1} = nx^{{n-1}}\)

\((e^x)' = e^x\)

posted @ 2024-11-19 10:20  Keith-  阅读(3)  评论(0编辑  收藏  举报