HDU 4990 Reading comprehension
题目链接:HDU 4990 Reading comprehension
题目大意:
\(f_0 = 0\),\(n\)为奇数时:\(f_n = f_{n-1} \times 2 + 1\),\(n\)为偶数时:\(f_n = f_{n-1} \times 2\)。
已知\(n\)和\(m\),求\(f_n\%m。\)
题解:
假设\(n\)为奇数,那么\(f_n=f_{n-1}\times 2+1\),而\(n-1\)必定是偶数,所以有:\(f_n=f_{n-1}+f_{n-2}\times 2+1\);
同理,假设\(n\)为偶数,那么\(f_n=f_{n-1}\times 2\),而\(n-1\)必定是奇数,所以有:\(f_n=f_{n-1}+f_{n-2}\times 2+1\)。
那么,\(f_n=f_{n-1}+f_{n-2}\times 2+1\)对于任意\(n(n>0)\)恒成立。
构造矩阵:
\[\left(\begin{matrix}
f_i \\
f_{i-1} \\
1
\end{matrix}\right)
=
\left(\begin{matrix}
1 & 2 & 1 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{matrix}\right)
\times
\left(\begin{matrix}
f_{i-1} \\
f_{i-2} \\
1
\end{matrix}\right)
\]
所以:
\[\left(\begin{matrix}
f_n \\
f_{n-1} \\
1
\end{matrix}\right)
=
\left(\begin{matrix}
1 & 2 & 1 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{matrix}\right)^{n-1}
\times
\left(\begin{matrix}
f_1 \\
f_0 \\
1
\end{matrix}\right)
\]
由\(f_1 = 1,f_0 = 0\)得:
\[\left(\begin{matrix}
f_n \\
f_{n-1} \\
1
\end{matrix}\right)
=
\left(\begin{matrix}
1 & 2 & 1 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{matrix}\right)^{n-1}
\times
\left(\begin{matrix}
1 \\
0 \\
1
\end{matrix}\right)
\]
#include <iostream>
#include <cstring>
using namespace std;
struct Matrix { // 矩阵
int row, col;
long long num[3][3];
};
long long n, m;
Matrix multiply(Matrix a, Matrix b) { // 矩阵乘法
Matrix temp;
temp.row = a.row, temp.col = b.col;
memset(temp.num, 0, sizeof(temp.num));
for (int i = 0; i < a.row; ++i)
for (int j = 0; j < b.col; ++j)
for (int k = 0; k < a.col; ++k)
temp.num[i][j] = (temp.num[i][j] + a.num[i][k] * b.num[k][j] % m) % m;
return temp;
}
Matrix fastPow(Matrix base, long long k) { // 矩阵快速幂
Matrix ans;
ans.row = ans.col = 3;
memset(ans.num, 0, sizeof(ans.num));
ans.num[0][0] = ans.num[1][1] = ans.num[2][2] = 1;
while (k) {
if (k & 1) {
ans = multiply(ans, base);
}
base = multiply(base, base);
k >>= 1;
}
return ans;
}
int main() {
Matrix base;
base.row = base.col = 3;
base.num[0][0] = base.num[0][2] = base.num[1][0] = base.num[2][2] = 1;
base.num[1][1] = base.num[1][2] = base.num[2][0] = base.num[2][1] = 0;
base.num[0][1] = 2;
while (cin >> n >> m) {
Matrix ans = fastPow(base, n - 1);
cout << (ans.num[0][0] + ans.num[0][2]) % m << endl;
}
return 0;
}