联考20200730 T3 小B的农场


分析:
没挖掘出性质可以\(O(n^2logn)\)得到60分。。。
发现\(1*n\)的农田是一定划得出来的,所以答案最小为\(2(max(W,H)+1)\)
之后我们发现如果要比这个答案大,农田一定过横向或者纵向的中线
假设过纵向中线(横向的同样处理)
每一次下边界向下拓展时,新加入的会对左右限制的点用线段维护一下就好了
复杂度\(O(nlogn)\)

#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#include<vector>
#include<string>

#define maxn 300005
#define INF 0x3f3f3f3f
#define MOD 998244353

using namespace std;

inline long long getint()
{
	long long num=0,flag=1;char c;
	while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;
	while(c>='0'&&c<='9')num=num*10+c-48,c=getchar();
	return num*flag;
}

int n,W,H,ans;
struct node{
	int x,y;
}p[maxn];
int mx[maxn<<2],lz[maxn<<2];
int s1[maxn],t1,s2[maxn],t2;

inline void build(int i,int l,int r)
{
	lz[i]=0,mx[i]=-p[l].y;
	if(l==r)return;
	int mid=(l+r)>>1;
	build(i<<1,l,mid),build(i<<1|1,mid+1,r);
}

inline void update(int i,int l,int r,int ql,int qr,int x)
{
	if(qr<l||r<ql)return;
	if(ql<=l&&r<=qr){lz[i]+=x,mx[i]+=x;return;}
	int mid=(l+r)>>1;
	update(i<<1,l,mid,ql,qr,x),update(i<<1|1,mid+1,r,ql,qr,x);
	mx[i]=max(mx[i<<1],mx[i<<1|1])+lz[i];
}
inline bool cmp(node x,node y)
{return x.y<y.y||(x.y==y.y&&x.x<y.x);}

inline void solve()
{
	sort(p+1,p+n+1,cmp);
	build(1,1,n),t1=t2=0;
	for(int i=1;i<=n;i++)
	{
		if(i>1)update(1,1,n,i-1,i-1,W);
		ans=max(ans,(p[i].y+mx[1]));
		if(p[i].x<=W/2)
		{
			update(1,1,n,s1[t1],i-1,-p[i].x);
			while(t1&&p[s1[t1]].x<p[i].x)update(1,1,n,s1[t1-1],s1[t1]-1,p[s1[t1]].x-p[i].x),--t1;
			s1[++t1]=i;
		}
		else
		{
			update(1,1,n,s2[t2],i-1,p[i].x-W);
			while(t2&&p[s2[t2]].x>p[i].x)update(1,1,n,s2[t2-1],s2[t2]-1,p[i].x-p[s2[t2]].x),--t2;
			s2[++t2]=i;
		}
	}
}

int main()
{
	W=getint(),H=getint(),n=getint();
	for(int i=1;i<=n;i++)p[i].x=getint(),p[i].y=getint();
	p[++n]=(node){0,0},p[++n]=(node){W,H};
	solve();
	for(int i=1;i<=n;++i)swap(p[i].x,p[i].y);
	swap(W,H);
	solve();
	printf("%d\n",ans*2); 
}

posted @ 2020-07-30 19:47  Izayoi_Doyo  阅读(173)  评论(0编辑  收藏  举报