教小高改bug

  博客园 :: 首页 :: 博问 :: 闪存 :: :: 联系 :: :: 管理 ::

1. 是什么热图

热图是对实验数据分布情况进行分析的直观可视化方法,可以用来进行实验数据的质量控制和差异数据的具像化展示。

其基本原则是用颜色代表数字,让数据呈现更直观、对比更明显。还可以对数据和样本进行聚类,观测样品质量。

热图有多种形式,但基本的元素是一致的。

例如上图中的2张热图,每个格子表示每个基因,颜色表示这个基因的上/下调,红色为上调,蓝色/绿色为下调。颜色越深代表这个基因的表达量越高。每行表示每个基因在不同样本中的表达量情况,每列表示每个样品中所有基因的表达量情况。

图中上面两条彩色的横条,是用颜色标识出实验的不同分组。比如图A中,第一行的黄色表示肿瘤组织,蓝色表示正常组织;图B中第一行的蓝色表示正常组织,粉色表示肿瘤组织。

图A中上方树形图表示对来自不同实验分组的不同样品的聚类分析结果,图A和B中左侧树形图表示对来自不同样本的不同基因的聚类分析结果。但是分组和聚类树形图在热图中不一定会出现,要根据研究需要决定是否加上。

2. 热图的作用

(1) 呈现样本间或基因之间的聚类关系:

① 对样本进行聚类:

上图中的上方树形图就是对样本进行聚类,可以对数据质量进行控制。

如果样本来自于同一个组,组内个样本间的特征应该是相似的,那么在进行聚类的时候就很容易被聚在一起。通过样本的聚类可以观察到所收集的不同组别样本是否被聚类到一起了。

如上图中的2个组之间存在着很大的差异,左侧组基因大多呈现下调,而右侧组相反。而且组内样本间的表达模式相似,说明组内样本间差异较小。如果发现某一个/几个应该属于这一组的样本被聚类到其他的组了,或者某个样本的表达模式与本组内其他样本差异显著,那就说明这个样本本身的变异度很高,或者说在之前的样本采集或者测序过程中出了什么问题,这就需要考虑把这个异常样本剔除掉再进行分析,这也就实现了对数据的质量控制。

② 基因之间的聚类:

上图中左侧树形图就是对基因的聚类,聚类可以观察到基因之间的关系,因为基因的上下游调控会导致连锁反应,一个基因的表达增加或减少可能会带动一系列基因的表达变化。那么从图中就可以看到这个连锁的相关性,也是就看到表达模式相似的一群基因被聚集在了一起。

当关注样本/基因在检测到的表达量水平如何分类,相互之间的关系如何,那么可以选择聚类。可以选择:只在样本水平聚类、只在基因水平聚类或两者都进行。当然也可以选择不聚类。

(2) 直观展示多样本多个基因的差异表达变化:

这个很容易理解,就是通过使用颜色(比如红色/绿色的深浅)来展示多个样本多个基因的表达量高低。但是有一个问题,那就是生信分析会得到成千上万的基因或蛋白,这样会导致热图的行数非常多,即使拿着放大镜也没办法在图片中分辨单个基因的情况。那么就可以从数据中找出一些重点关注的基因绘制热图,这样能够清晰的向读者展示自己所研究的一些关键基因的表达情况,所以有些文章中的热图是这样子的(如上图)。

3. 一些热图

 

4. 热图的绘制

热图_样本分类

输入数据:数值型矩阵 / 数据框,样本分组

id	GSM3325819	GSM3325820	GSM3325823	GSM3325825	GSM3325827	GSM3325829	GSM3325818	GSM3325821	GSM3325822	GSM3325824	GSM3325826	GSM3325828
SLC6A4	10.2790154	12.0014197364167	11.5830405141667	9.67216154858333	11.0841729208333	9.21662444141667	4.44045608358333	4.81108840941667	6.99765143083333	6.00964615416667	6.03208499416667	5.62817784166667
FLJ34503	7.35826503583333	8.73438759166667	7.56571767191667	7.61031364916667	9.59731241083333	7.47501336941667	1.93977552916667	5.83290972225	0.566909014166667	2.635413775	5.24356857333333	2.72272768333333
TMEM100	11.5028938725	12.8866491566667	12.8070366008333	11.3660599583333	12.38474576	11.8281083225	9.30754897441667	4.89115678666667	8.12515011775	8.07533610416667	8.02991233166667	7.0292106625
SGCG	7.45381075583333	8.76144678333333	6.6384574875	8.75060294083333	8.60547094166667	5.15092098166667	3.26663581	2.81855656666667	2.74013808166667	2.41791927358333	5.68402112808333	1.605853125
FCN3	11.2426962166667	11.1393133725	11.59793688225	9.83870065583333	11.6568733358333	10.37383195	6.88183068	7.77466290833333	8.38742424725	7.45381075583333	6.95686153833333	2.14102007916667
FABP4	9.44556533108333	10.4539284035	9.95310207333333	11.7297702216667	9.82816244858333	9.62540911083333	4.76939967666667	4.56338139	7.71683384583333	7.17356355166667	5.70634670833333	4.92492246666667
MME	10.0569225066667	10.9009659541667	9.34142982666667	10.9227288708333	10.204786935	9.95959348608333	6.03781415416667	5.68615953916667	5.4097290125	6.8319003025	5.02448836083333	7.00493966166667
LINC00968	7.22703337083333	8.117013878	7.27664695166667	8.57126690166667	9.08865539166667	7.44883593	0.397068076666667	1.58106110833333	5.3824569125	5.25733538958333	5.56573593333333	5.04790310833333
LOC101928161	7.31213299308333	7.840057835	7.72971270366667	8.73452805166667	8.66680205833333	7.99010304691667	2.6592403025	5.83516271416667	2.013063475	4.32695368333333	6.21921042058333	3.11260469166667
SLC19A3	9.10254879333333	9.33269241358333	8.72858142916667	9.6189554125	8.49773283916667	9.48712972083333	2.8540796375	5.08536016916667	8.3278824205	6.96594506858333	3.23004175833333	4.48509327083333
IGSF10	10.2267714375	10.2659630375	9.093945	10.71400674725	10.4155032458333	10.0268044194167	4.40089568583333	7.175175525	7.55383722083333	5.851623075	7.24715919166667	5.64745950166667
CXorf31	6.6871006875	7.86954131666667	7.66816592333333	7.80761504333333	6.98192265833333	6.58260338333333	3.52379041875	3.66660552083333	3.867264625	3.49023143333333	3.4636534125	2.78007404416667
LINC00551	8.49757209	10.769069475	9.74225618358333	8.449980345	9.72753374416667	9.52770761083333	1.83274905833333	5.54698795	7.60102346666667	6.46337097666667	7.31818832375	6.77712021916667
EDNRB	10.3616288916667	11.8022907496667	11.2131908708333	11.2464474055833	12.032056875	10.9628426416667	6.80964032358333	6.73861853666667	8.81819696833333	7.88377294666667	7.91552993916667	8.33392521416667
CADM3-AS1	8.1317605875	7.29241178333333	6.17973703333333	6.80332268333333	6.79018277	7.40999846083333	2.21355756416667	3.23171308333333	3.92213062458333	2.5772616025	6.69122156458333	2.88120256666667
SERTM1	6.54960289416667	8.03364936458333	6.8495519575	7.29241178333333	7.76678184775	6.54319473541667	1.91103223333333	6.73139104833333	2.58422171941667	3.20996331666667	6.05993819166667	1.7383533275
BEX1	7.43802866975	8.52811812225	6.91474796666667	6.65291787583333	7.86389896333333	7.67809592333333	3.39917174583333	3.58101139166667	4.20171439583333	4.76548111666667	5.08402127416667	3.42028435
PKHD1L1	8.52096433833333	7.83816161225	7.33748443	7.81602969191667	7.90051081225	6.63662880416667	5.1948316125	2.96045204166667	6.12185927	2.80861806666667	4.59401126108333	4.06472309625
LOC400568	7.61437324416667	8.45412479275	8.11386925916667	8.59093429166667	8.39918634583333	7.58813657225	6.01089106666667	3.80662214275	4.72523417333333	2.97923660833333	6.99215599166667	4.00240615166667
CLDN18	12.3215042433333	12.1445753360833	12.1369395416667	11.4712283708333	11.8281083225	11.4624539	7.0735602125	10.2144020225	8.188591005	8.619060665	8.83365937108333	8.22454263708333
GDF15	6.79186842	7.22094631	4.57300452666667	5.76369928891667	6.62393801083333	8.44561084833333	7.91692880691667	10.6529581233333	9.9212265475	9.35897586833333	9.42769180416667	8.96260101666667
C10orf91	3.4851225475	4.06037220208333	3.36892411666667	4.58521273083333	3.60778099	3.53442753166667	7.75562177583333	4.98959535625	7.10208118441667	6.2828701875	5.79827599166667	7.57737177666667
HCN3	5.66260523333333	4.03350374166667	4.9414449	2.79124468333333	6.05252840416667	3.85178560416667	7.87875477916667	4.93551260416667	7.596526225	8.57525503125	7.63159067916667	7.77912835558333
FAM111B	5.51343009558333	5.4766644975	4.77081165941667	2.4337983625	4.4389164375	6.87582391725	8.05232948166667	6.73368792916667	7.63723593	8.94947111775	7.14472385691667	9.0649206195
GJB2	7.25774277108333	5.25261369166667	4.21943182333333	7.11045739166667	5.20973059958333	3.09527707916667	9.78251989833333	8.00046514833333	7.75401379725	8.41522846416667	8.13019973608333	8.44100866641667
RPRM	5.83263597916667	3.9720808775	4.38789986916667	4.97718740833333	4.865009305	1.91103223333333	7.49964860416667	7.63592795166667	9.26472971941667	6.60286646041667	8.7060042625	4.802508375
PVRL4	4.95685980666667	6.60286646041667	7.550405255	4.59611394166667	6.09292623916667	9.09771305	9.40888825	9.7363276125	9.71874314141667	10.6951028958333	8.69947373833333	9.39528997108333
CP	8.8640721475	7.65936865208333	6.91052113083333	8.31329851375	7.22931042083333	9.91338081208333	10.2011076108333	12.4568289791667	10.2321475125	12.4070694791667	9.65485622308333	12.7341787858333
MUC3B	6.32084056666667	6.2099780275	6.9854850275	5.05859296416667	7.382848396	8.197960985	7.96729396	9.17337479116667	9.556299799	11.5929258083333	10.36043525975	10.77081142775
LOC101929486	1.250725775	3.77978720558333	1.3504145	4.96508849583333	2.425318645	1.07517040583333	4.6498840375	6.58145513925	6.60153932916667	4.84778644583333	5.87533878083333	5.74143719166667
FLJ13744	4.44761275833333	3.36986136941667	2.88003524166667	2.8619764625	4.33983239191667	3.47594405	7.39237029975	4.990000325	9.160727475	6.6905791525	6.28643260208333	6.416338645
TOX3	7.12929376583333	7.29223398	5.4535426825	6.3032847225	6.6859171625	7.45982792358333	9.78888141	10.6951028958333	7.88349037	10.980610875	10.2424286480833	10.6290471166667
KRT6A	1.04926865166667	1.2461490875	1.84992340416667	0.9432334975	3.77195915	1.50010925833333	6.7477884525	3.24045832083333	8.19696466891667	3.60288896916667	4.19016361833333	5.57636927775
MSMB	5.31047677083333	2.3188149625	4.27056247358333	3.90133065666667	2.96663602916667	5.578170685	7.5095568625	7.15040929116667	9.2452192475	9.09484889166667	5.52919265416667	7.27937762083333
LINC01021	4.38308837083333	2.56059448333333	0.292733796666667	1.45238518333333	0.0278696504166667	4.22853630833333	5.74143719166667	5.2919436875	6.28213648083333	5.25504549583333	5.2081466025	7.40974165833333
TMPRSS4	8.15328845	5.31178408	2.48408831666667	6.3645224525	4.83222413083333	8.98885644333333	10.4612623294167	10.0589189083333	10.4368363166667	10.4024882383333	7.95569365416667	10.0189098083333
MMP1	6.76379224166667	5.98912077458333	4.47551179833333	1.50010925833333	5.36866488333333	5.945240635	10.3075431458333	11.25352095	7.21967195691667	9.2837575115	7.26039153691667	7.97909578333333
MMP7	6.96566420166667	3.09701585416667	6.805228375	3.85917199583333	5.37901854166667	3.663908935	8.86433730416667	10.04533180025	7.98134272691667	8.62742686	9.2832412975	9.02702731141667
C12orf74	3.14668888166667	2.27439840416667	2.51270725833333	2.27180393333333	0.461881556666667	2.36323582416667	5.4703514375	7.84964717058333	5.41009004583333	8.25263112083333	7.32792188166667	6.6251894275
SPINK1	7.62697714941667	5.7421195875	6.02074538916667	5.76148253916667	7.40816433225	6.50510097225	11.21040858	13.1444367916667	10.4342765233333	13.7020031625	9.156340734	9.90802716
input.txt

id	Type
GSM3325819	N
GSM3325820	N
GSM3325823	N
GSM3325825	N
GSM3325827	N
GSM3325829	N
GSM3325818	T
GSM3325821	T
GSM3325822	T
GSM3325824	T
GSM3325826	T
GSM3325828	T
group.txt

代码:

library(pheatmap) 
setwd("") 

inputFile <- "input.txt"  # 基因表达文件,行名为基因,列名为样本
groupFile <- "group.txt"  # 分组文件   
outFile <- "heatmap.pdf"      

rt <- read.table(inputFile, header = T, row.names = 1,check.names = F)     #读取文件
ann <- read.table(groupFile, header = T, row.names = 1,check.names = F)    #读取样本属性文件


# 绘制
p <- pheatmap(mat = rt,  # 输入数据
              annotation_col = ann,  # 样本注释(分组)
              cluster_cols = TRUE,  # 对列进行聚类
              color = colorRampPalette(c("blue", "white", "red"))(50),  # 设置热图渐变颜色
              show_colnames = TRUE,  # 展示列名(样本名)
              scale = "row",  # 字符指示值在行方向上居中和缩放
              #border_color = "NA",  # 热图上单元格边框的颜色,如果不应绘制边框,请使用 NA。
              fontsize = 8,  # 绘图的基本字体大小
              fontsize_row = 6,  # 行名的字体大小(默认值:fontsize)
              fontsize_col = 6)  # 列名的字体大小(默认值:fontsize)
pdf(file = outFile, width = 6, height = 5.5)
print(p)
dev.off()

热图_临床性状分类

输入数据:

id	TCGA-VQ-A8E0	TCGA-VQ-A927	TCGA-BR-7704	TCGA-RD-A7BW	TCGA-CD-A489	TCGA-BR-7722	TCGA-CD-5813	TCGA-CG-4466	TCGA-BR-7715	TCGA-BR-6801	TCGA-CG-5716	TCGA-VQ-A91A	TCGA-CD-5801	TCGA-BR-4267	TCGA-BR-8369	TCGA-CG-5732	TCGA-BR-7196	TCGA-R5-A7ZE	TCGA-CG-4460	TCGA-BR-8384	TCGA-BR-6563	TCGA-D7-6525	TCGA-CD-8525	TCGA-IN-A6RS	TCGA-BR-6705	TCGA-D7-A6EX	TCGA-VQ-A8E3	TCGA-RD-A7C1	TCGA-CG-5720	TCGA-BR-8686	TCGA-BR-8590	TCGA-VQ-AA6G	TCGA-BR-8484	TCGA-BR-8487	TCGA-R5-A7ZI	TCGA-VQ-A8DT	TCGA-D7-A6EZ	TCGA-BR-8372	TCGA-D7-6528	TCGA-VQ-A91V	TCGA-VQ-A8E2	TCGA-BR-7707	TCGA-BR-8367	TCGA-HU-A4G9	TCGA-BR-8683	TCGA-CG-5734	TCGA-BR-A4CR	TCGA-KB-A93H	TCGA-D7-A6F2	TCGA-HU-A4G8	TCGA-VQ-A922	TCGA-BR-6452	TCGA-BR-8361	TCGA-VQ-A8PX	TCGA-BR-8589	TCGA-D7-8573	TCGA-CG-5718	TCGA-CD-8526	TCGA-VQ-A91K	TCGA-BR-6566	TCGA-HU-A4GJ	TCGA-HU-A4H4	TCGA-HU-A4GD	TCGA-D7-A4YX	TCGA-HU-A4GX	TCGA-BR-8060	TCGA-VQ-A924	TCGA-VQ-A8P2
YTHDC1	4.06435453045454	3.87111216090909	4.24334676181818	4.03566221590909	3.946877035	5.82877875909091	3.16569023090909	4.70597841818182	3.03646596409091	2.92429133454545	3.12125921136364	3.91555516636364	3.33470000545455	3.72766813136364	4.33199888681818	3.08742681954545	4.83860692727273	2.70829464590909	5.83003343181818	4.450729545	3.46918737818182	3.57516306409091	3.93865759363636	3.20906636636364	3.11045749818182	4.97039821363636	6.11907407272727	2.47724680363636	3.57992570954545	14.93966511	9.695689042	8.388380469	10.24386018	10.91300896	4.927073883	8.091974375	10.11640533	7.188566889	5.877338274	11.50899103	10.26789456	7.298127237	9.423931602	8.041537406	9.962660087	5.182297737	12.39472786	12.16566928	10.27191961	12.497268	8.401185643	8.587039336	7.756071186	11.41675348	12.5143307	8.947376421	6.768702969	11.5365993	9.82352852	5.841140541	14.48291015	11.03121397	11.22695799	11.59819836	11.21366449	10.78952683	9.773523194	11.05592863
YTHDF1	10.9835042954545	5.88152049545455	12.7795350363636	7.69597488181818	8.79601412727273	8.70354602727273	11.0688067681818	16.2174106772727	17.8715798772727	10.5608272409091	8.40160567727273	8.43612734090909	10.6333242409091	8.10447993181818	13.2774309181818	16.2052664727273	12.0617544818182	12.1841028909091	7.56732559545454	8.55914993636364	7.65313894090909	16.0492420954545	12.6415491954545	13.7820405863636	9.79671765454545	10.4109251681818	10.7117320545455	14.4128929818182	8.73180802727273	30.35708374	26.75257505	18.93551729	37.95689211	15.32627278	24.85566425	15.23603369	32.25693572	19.39554303	38.85390942	25.19778981	51.94761781	19.65250878	19.42333399	18.0111836	46.86413009	21.66607071	31.93992971	27.88721248	25.45785732	25.90294823	41.75736142	25.65642439	21.47271041	24.32492797	48.10082755	46.80753815	25.36150085	38.74998317	23.86823495	13.08103593	18.38679318	28.27584561	29.31585837	42.20356834	29.21061936	34.21826568	22.75147873	23.48711548
FTO	2.24142285409091	1.35546637545455	1.03768001227273	3.15449145818182	2.47124288909091	1.32669774363636	1.5899872	1.46837967409091	1.44218926772727	1.21511950227273	1.24900552727273	1.84948416045455	1.37182880181818	1.28006688227273	1.98403520272727	1.16810626272727	1.94835442136364	1.38014529727273	2.47511698454545	2.97333884818182	1.42796588545455	1.75766490681818	1.10737339909091	1.14089447545455	2.26287211727273	1.23905585227273	2.15064870636364	1.25359428454545	1.11015281681818	5.092057098	4.415482899	2.778510503	3.732083269	1.545202556	1.286609989	2.102746949	3.740934303	3.130241809	2.083924951	3.914779242	3.276867817	2.583022623	5.128708042	2.392070241	4.106285961	1.83036623	5.665092593	1.952261861	2.590740061	3.621926863	4.105531726	3.113210267	3.039370823	2.350884542	3.104662704	4.804420335	1.096253535	3.146103986	3.175273412	1.771048925	4.198951912	2.181320704	1.720651746	2.723868672	6.813822131	5.888400117	3.575259691	6.617514769
ALKBH5	11.8637082681818	9.88070838636364	7.16719443636364	10.1837715454545	8.5346616	9.30487122272727	7.92860504090909	8.3066504	7.87431227727273	9.58065916818182	10.1529637590909	12.5330973727273	9.43701447272727	4.70170369545454	10.7924914954545	7.88360484545455	11.4339265727273	7.70387459545455	8.11742745	14.8793481909091	8.43415064090909	6.83611768181818	5.55065404090909	5.16734088181818	11.27804345	10.1232778772727	11.9890914818182	6.75864493181818	7.94559953181818	30.7773543	29.11674021	12.50836486	26.3916696	17.97255953	18.86803144	19.66738079	29.20909927	20.63697277	18.38126581	22.24277303	25.41284611	21.84817186	32.10997204	23.03471779	24.99474405	17.71605138	52.78523119	16.42416807	15.85167635	29.51284169	20.26391465	35.32505807	25.17888273	22.170061	28.52429715	43.8372093	15.99609146	29.91470046	25.17764672	20.95944681	29.14287844	22.74855376	13.94847476	29.55967972	20.41271419	26.40719507	26.10203529	32.8481433
METTL3	2.12342316863636	1.506822415	4.151518135	1.35008286136364	1.72509146909091	1.89773681772727	1.008046725	2.81685510545455	1.34356032	1.59402589545455	1.61871665909091	1.90071001045455	0.866997726363636	1.25770576045455	1.80223820818182	1.86075737409091	1.58934878136364	1.52895102227273	2.23367641727273	1.69513006772727	1.07920017636364	1.89424019590909	1.89067082272727	2.15087055590909	1.82512170636364	2.24705423227273	1.55850052818182	1.78100550818182	1.58704642681818	4.298266915	4.873450192	2.05371884	3.32591811	3.204080265	3.362320916	3.274284325	4.741233127	6.729997082	6.683389462	4.442801418	5.156387747	4.840420511	4.007377095	3.530442273	3.626270176	1.686241063	7.22675626	5.558165949	3.830825884	7.815248296	8.942214847	4.533959745	6.052881231	3.182360963	4.725124783	4.744685899	3.897133439	4.781126119	3.248716473	1.919522908	5.953410914	3.782408846	5.077450365	5.741316004	6.678389723	6.871995712	4.059823314	5.745312065
HNRNPC	18.8966599409091	11.0113185590909	22.1994453772727	12.0128155636364	15.0454875454545	13.5403540954545	15.1414276636364	18.9641144863636	15.3210098727273	11.0224632227273	17.8050876045455	13.1154594909091	17.4834015909091	22.2328647409091	15.5674390090909	22.9818487045455	18.5310001409091	16.9670946181818	23.2440598272727	11.1168440636364	14.5407287045455	17.8961734545455	23.07190535	16.4461284863636	15.2676504454545	20.8355804318182	19.9077313954545	15.1049493636364	23.0786506318182	35.64066475	34.24021976	24.75718929	35.10022424	45.0584757	32.80227323	38.95334426	51.57456294	78.60826634	41.80255325	34.59213563	41.42739981	62.18878798	35.04198579	37.07784389	26.30072264	30.49306769	58.89417471	40.4345726	23.67783576	51.83291891	40.7336908	46.51634377	41.15376378	29.71666762	56.91572347	46.721717	39.96494254	51.65639307	34.27037805	41.87094267	53.18145085	43.19244973	36.63108349	50.82141199	45.68333229	41.63008736	52.68223325	49.69518918
YTHDC2	2.48003677818182	2.38224790272727	1.12414010090909	1.457125035	1.26649843727273	1.48540143136364	0.601102532272727	1.27142100772727	0.83230008	0.588965496818182	1.38427900409091	1.41062968545455	0.661438465	0.8224391	1.37771818136364	1.16546642772727	1.51021920545455	1.08107916363636	2.42515862590909	1.78076726545455	0.912684623636364	0.819970698181818	0.641989586818182	0.884589640454545	0.844504667727273	1.44398701454545	2.44240051363636	1.98289205363636	0.881440544090909	4.48392162	3.422866387	3.695493726	3.733292758	3.436506731	2.689556579	3.180847005	3.943744224	4.153929908	3.11806045	2.854070504	2.390261615	2.474026144	6.287275839	5.822968806	3.493692702	1.495447015	2.608836685	1.881466926	2.158604756	6.074352227	3.250162242	4.571994392	4.028364425	5.122406282	3.894925328	3.112500447	1.011490089	2.458326913	5.291654737	1.797107082	6.107979462	3.7756026	3.079526689	3.881179764	5.090847907	6.569819968	5.852428456	4.692916387
ZC3H13	6.43431679545454	7.31770860909091	7.28329918181818	8.10945477272727	9.51479848181818	8.4992727	3.17967974772727	4.06121085272727	2.98827341136364	7.1435621	3.22206352636364	9.09781649545454	4.07988136636364	4.17426959818182	7.73439463181818	3.35526652636364	4.36743784045454	4.45627233863636	3.52872989863636	7.54103881363636	4.90590945909091	2.213757055	10.8024702681818	5.48923973181818	6.41641262272727	9.62479323636364	9.80694835909091	4.15661832863636	3.10121285272727	15.58489071	11.12910603	11.07410304	12.74161643	9.596796925	7.781065526	17.59762374	12.17995428	4.577559253	7.083188996	15.84133882	14.20491523	9.892061378	13.07039642	5.954483007	11.46976736	7.581169836	58.33827671	43.30911419	21.467638	17.42120879	26.33569459	5.132810989	12.47872317	15.63928566	10.50404816	18.11263967	8.481933451	15.10353244	16.26126263	10.79504071	18.21337457	15.82426108	26.87758011	11.2137306	12.66189725	16.49435991	18.23534574	15.2433404
RBM15	1.79525376954545	1.59450639454545	0.960820737272727	0.989827803636364	0.958621575	1.03920964181818	1.086472215	1.78128531409091	1.56040047045455	0.901409196363636	1.4246812	1.57357938272727	0.933748506363636	1.54280802863636	2.08854919863636	1.59695218272727	1.79554552	1.22314226272727	1.82125537090909	2.16269869636364	1.15481846272727	1.45621654409091	1.62598219681818	1.97120234454545	1.68506639863636	1.10898367545455	2.321365375	1.76820818863636	1.40456769636364	6.74634806	5.008552301	5.655262844	6.535421974	3.985799147	3.003479896	2.922133655	5.135814223	6.149199147	4.644917781	5.696947314	5.627730102	3.17219378	6.41176099	6.414942358	6.855536089	2.962791462	7.967581074	3.885080427	4.185881638	9.695415128	7.145972112	5.631517248	7.38344201	7.173947724	6.531284213	6.460601291	3.164173207	5.332458311	4.474371466	2.288036597	8.437172534	5.268452496	3.626074343	7.714117645	5.722543698	7.571507588	4.953254087	4.906764305
KIAA1429	2.037200155	2.91496185045454	1.86759104818182	1.96170923136364	2.18534829954545	1.60832682363636	2.64692838727273	3.15120517181818	3.82842397727273	2.28131387954545	1.90934391954545	3.89174105909091	1.33789235636364	2.51912466681818	4.39303074045455	1.92590029363636	2.31044211545455	2.30595519136364	4.95286361818182	2.68093441	1.56033890909091	3.31160727272727	2.64107457	2.37870128090909	1.94029098636364	2.41468684227273	3.18922522681818	3.12959151863636	1.41739758136364	4.769517685	9.755343421	5.616950034	5.841211149	3.089413475	4.055851755	6.358676021	5.146621382	8.671978439	8.478957487	9.8624621	6.341825245	4.889376227	7.594572266	10.18152208	7.204268995	2.629473661	5.46817933	4.407263452	9.029968028	6.558121509	9.163760728	8.243455988	4.796890081	10.16693458	4.855124386	5.838672597	5.517767632	10.49313087	5.28073379	2.542800545	6.020980659	5.396604335	9.458944381	7.63502224	3.398545371	4.707456852	5.93486817	6.979243027
WTAP	4.93379968181818	4.11284914045455	7.12113284090909	5.07973857272727	4.89350264090909	2.60830330727273	4.112242435	7.32901452727273	5.38678813181818	3.01857350545455	3.86522513363636	5.18296494090909	4.55203648181818	5.44662808181818	6.28071150454545	4.30292095090909	6.15305626363636	3.93522790681818	5.90416775	4.25637771954545	4.64582371363636	3.14694834363636	4.76799943636364	8.26186002272727	3.49639077045455	4.80980246818182	5.96727724090909	5.30853831363636	5.55402438636364	14.66046266	8.568607781	9.842592186	14.37509516	10.36228953	10.22066219	9.160962572	16.13146163	20.16773988	14.68795187	11.53483017	13.24605454	9.8150377	9.066860999	8.394427722	12.84981158	7.520965209	13.75173511	9.594987522	6.477185833	13.12349242	11.83756272	11.47255281	12.40908507	10.55810094	15.54922561	8.471164747	9.329763349	15.38523377	13.2810991	9.107319478	14.43778611	10.52647177	14.57529139	11.20363058	11.84338966	14.46070125	12.9190412	11.48503458
METTL14	0.963515348181818	1.10497685227273	0.665595704545454	1.34539720954545	1.36233093909091	1.13024343136364	0.61617425	1.47240394227273	1.63597013409091	1.01737086090909	0.751829471363636	0.79981591	0.938313406363636	1.27699397090909	2.09827622318182	0.904162128636364	1.22096751681818	0.911746058636363	1.96128348318182	1.47472569136364	1.18861096045455	1.276844665	0.610413122272727	0.910282039545455	0.774856838181818	1.44429395409091	0.856288798636364	0.728616452272727	1.20193215318182	3.363388297	2.998350275	2.047985875	2.405090254	2.509342545	2.141614968	1.974391882	3.306187759	3.49548276	1.280167544	1.890462154	2.702271008	2.603688427	3.755777051	3.145840458	3.075813158	1.206973772	2.756080932	1.65183088	2.774776096	3.897389617	2.984106104	3.823221682	2.00564415	1.922774416	3.229130451	2.612636983	1.319525318	3.143449691	3.238729306	1.454098901	3.310479992	3.040500559	2.460349027	3.607944946	4.228503009	4.187157786	6.766463283	6.865103798
YTHDF2	6.84778351363636	7.70784595909091	8.68475716818182	4.78471917727273	6.77326702727273	9.82850545454545	6.36341943636364	10.5491475954545	10.6686461181818	7.88306338636364	7.98470563636364	7.87279869545454	7.26838211363636	6.37867648636364	9.77470780454545	8.24297951363636	9.12005882272727	8.68613537272727	9.31980055909091	7.56224375	7.44763673636364	8.64648350909091	10.8542494045455	8.64930812272727	7.19955365454545	11.02289215	8.75741152272727	5.58695965909091	10.2692389136364	22.71064304	20.94795805	18.30349884	27.22999366	23.40952847	14.6862111	18.04977544	28.92653878	28.90856898	21.1894887	19.62349124	22.31868563	22.60073685	22.97944947	24.65996703	20.69128398	10.84050341	29.03055542	21.87056907	26.42518374	25.03618335	21.18591265	25.45563714	22.19865336	20.88729628	27.54384623	24.30286539	26.35331223	31.27772024	21.48254498	15.88851912	20.51922233	15.65325276	19.92445099	27.62181678	20.60313617	28.13428018	24.10524952	25.65402547
input.txt

id	fustat	age	gender	grade	stage	Risk
TCGA-VQ-A8E0	Dead	>65	MALE	G3	Stage III	high
TCGA-VQ-A927	Dead	>65	MALE	G1	Stage III	high
TCGA-BR-7704	Alive	>65	FEMALE	G3	Stage II	high
TCGA-RD-A7BW	Dead	>65	FEMALE	G3	Stage I	high
TCGA-CD-A489	Dead	<=65	MALE	G3	Stage II	high
TCGA-BR-7722	Dead	<=65	MALE	G3	Stage II	high
TCGA-CD-5813	Dead	<=65	MALE	G3	Stage II	high
TCGA-CG-4466	Alive	>65	FEMALE	G2	Stage I	high
TCGA-BR-7715	Alive	<=65	MALE	G2	Stage II	high
TCGA-BR-6801	Alive	>65	MALE	G2	Stage II	high
TCGA-CG-5716	Alive	>65	MALE	G2	Stage IV	high
TCGA-VQ-A91A	Alive	>65	MALE	G1	Stage III	high
TCGA-CD-5801	Dead	>65	MALE	G3	Stage III	high
TCGA-BR-4267	Dead	<=65	MALE	G2	Stage I	high
TCGA-BR-8369	Alive	>65	FEMALE	G3	Stage III	high
TCGA-CG-5732	Dead	>65	MALE	G2	Stage IV	high
TCGA-BR-7196	Alive	<=65	MALE	G3	Stage IV	high
TCGA-R5-A7ZE	Dead	>65	FEMALE	G2	Stage III	high
TCGA-CG-4460	Dead	>65	FEMALE	G2	Stage IV	high
TCGA-BR-8384	Alive	>65	MALE	G3	Stage III	high
TCGA-BR-6563	Alive	<=65	MALE	G3	Stage II	high
TCGA-D7-6525	Dead	<=65	MALE	G3	Stage III	high
TCGA-CD-8525	Alive	>65	FEMALE	G3	Stage III	high
TCGA-IN-A6RS	Alive	>65	MALE	G2	Stage I	high
TCGA-BR-6705	Alive	>65	FEMALE	G3	Stage III	high
TCGA-D7-A6EX	Alive	>65	FEMALE	G3	Stage III	high
TCGA-VQ-A8E3	Dead	>65	MALE	G3	Stage II	high
TCGA-RD-A7C1	Dead	>65	MALE	G3	Stage I	high
TCGA-CG-5720	Dead	>65	MALE	G3	Stage I	high
TCGA-BR-8686	Alive	>65	MALE	G3	Stage III	low
TCGA-BR-8590	Dead	<=65	MALE	G3	Stage III	low
TCGA-VQ-AA6G	Dead	>65	MALE	G2	Stage II	low
TCGA-BR-8484	Dead	<=65	MALE	G2	Stage III	low
TCGA-BR-8487	Alive	<=65	FEMALE	G3	Stage II	low
TCGA-R5-A7ZI	Alive	<=65	FEMALE	G3	Stage IV	low
TCGA-VQ-A8DT	Alive	<=65	MALE	G3	Stage III	low
TCGA-D7-A6EZ	Alive	>65	MALE	G3	Stage III	low
TCGA-BR-8372	Alive	<=65	MALE	G3	Stage III	low
TCGA-D7-6528	Alive	>65	FEMALE	G2	Stage I	low
TCGA-VQ-A91V	Alive	<=65	MALE	G2	Stage III	low
TCGA-VQ-A8E2	Alive	<=65	MALE	G2	Stage III	low
TCGA-BR-7707	Alive	>65	FEMALE	G3	Stage I	low
TCGA-BR-8367	Alive	<=65	MALE	G3	Stage III	low
TCGA-HU-A4G9	Alive	>65	FEMALE	G2	Stage I	low
TCGA-BR-8683	Dead	>65	MALE	G3	Stage III	low
TCGA-CG-5734	Dead	>65	MALE	G3	Stage III	low
TCGA-BR-A4CR	Alive	>65	FEMALE	G3	Stage III	low
TCGA-KB-A93H	Alive	>65	FEMALE	G1	Stage II	low
TCGA-D7-A6F2	Alive	<=65	MALE	G3	Stage I	low
TCGA-HU-A4G8	Alive	>65	FEMALE	G3	Stage II	low
TCGA-VQ-A922	Dead	>65	MALE	G2	Stage IV	low
TCGA-BR-6452	Alive	>65	FEMALE	G3	Stage II	low
TCGA-BR-8361	Alive	>65	FEMALE	G3	Stage III	low
TCGA-VQ-A8PX	Alive	<=65	MALE	G2	Stage I	low
TCGA-BR-8589	Alive	<=65	MALE	G3	Stage III	low
TCGA-D7-8573	Alive	<=65	MALE	G3	Stage II	low
TCGA-CG-5718	Dead	>65	FEMALE	G2	Stage II	low
TCGA-CD-8526	Alive	>65	FEMALE	G3	Stage III	low
TCGA-VQ-A91K	Alive	>65	MALE	G2	Stage III	low
TCGA-BR-6566	Alive	<=65	FEMALE	G3	Stage II	low
TCGA-HU-A4GJ	Alive	<=65	FEMALE	G3	Stage III	low
TCGA-HU-A4H4	Alive	<=65	FEMALE	G3	Stage II	low
TCGA-HU-A4GD	Alive	<=65	MALE	G3	Stage II	low
TCGA-D7-A4YX	Alive	<=65	MALE	G3	Stage II	low
TCGA-HU-A4GX	Alive	>65	FEMALE	G3	Stage III	low
TCGA-BR-8060	Dead	>65	FEMALE	G3	Stage II	low
TCGA-VQ-A924	Dead	>65	MALE	G2	Stage II	low
TCGA-VQ-A8P2	Alive	>65	MALE	G2	Stage III	low
clinical.txt

代码:

library(pheatmap)           
setwd("")  # 设置工作目录

# 输入的表达数据和临床数据中的样本不必完全一致,后续会取交集
expFile <- "input.txt"         # 表达数据,行名为基因,列名为样本
cliFile <- "clinical.txt"      # 临床数据,行名为样本,列名为临床性状。临床性状会在热图中依次从下往上展示
outFile <- "heatmap.pdf"    

var <- "Risk"     # 按照临床性状(此处为风险)对样品排序

rt <- read.table(expFile, sep = "\t", header = T, row.names = 1, check.names = F)       #读取表达文件
Type <- read.table(cliFile, sep = "\t", header = T, row.names = 1, check.names = F)     #读取临床文件 

# 样品取交集
sameSample <- intersect(colnames(rt), row.names(Type))  # 对表达数据和临床数据中的样本取交集
rt <- rt[,sameSample]  # 取表达数据中的相同样本
Type <- Type[sameSample,]  # 取临床数据中的相同样本
Type <- Type[order(Type[,var]),]   # 按临床性状排序
rt <- rt[,row.names(Type)]  # 调整样本顺序一致

# 绘制热图
p <- pheatmap(mat = rt,  # 输入数据
              annotation_col = Type,  # 样本分类
              color = colorRampPalette(c("blue", "white", "red"))(50),  # 设置热图渐变颜色
              cluster_cols = F,    # 不对列进行聚类
              scale = "row",   # 基因矫正,字符指示值在行方向上居中和缩放
              show_colnames = F,  # 不展示列名(样本名)
              fontsize = 7.5,  # 绘图的基本字体大小
              fontsize_row = 7,  # 行名的字体大小(默认值:fontsize)
              fontsize_col = 5)  # 列名的字体大小(默认值:fontsize)
pdf(outFile, height = 5, width = 8)
print(p)
dev.off()

 

posted on 2022-10-03 20:42  小高不高  阅读(945)  评论(0编辑  收藏  举报